Suppr超能文献

谱定量构效关系(Profile-QSAR):一种新型的元定量构效关系方法,它结合了激酶家族的各项活性,可准确预测亲和力、选择性和细胞活性。

Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity.

机构信息

Oncology and Exploratory Chemistry, Global Discovery Chemistry, Novartis Institutes for Biomedical Research, Emeryville, California 94608, USA.

出版信息

J Chem Inf Model. 2011 Aug 22;51(8):1942-56. doi: 10.1021/ci1005004. Epub 2011 Jul 19.

Abstract

Profile-QSAR is a novel 2D predictive model building method for kinases. This "meta-QSAR" method models the activity of each compound against a new kinase target as a linear combination of its predicted activities against a large panel of 92 previously studied kinases comprised from 115 assays. Profile-QSAR starts with a sparse incomplete kinase by compound (KxC) activity matrix, used to generate Bayesian QSAR models for the 92 "basis-set" kinases. These Bayesian QSARs generate a complete "synthetic" KxC activity matrix of predictions. These synthetic activities are used as "chemical descriptors" to train partial-least squares (PLS) models, from modest amounts of medium-throughput screening data, for predicting activity against new kinases. The Profile-QSAR predictions for the 92 kinases (115 assays) gave a median external R²(ext) = 0.59 on 25% held-out test sets. The method has proven accurate enough to predict pairwise kinase selectivities with a median correlation of R²(ext) = 0.61 for 958 kinase pairs with at least 600 common compounds. It has been further expanded by adding a "C(k)XC" cellular activity matrix to the KxC matrix to predict cellular activity for 42 kinase driven cellular assays with median R²(ext) = 0.58 for 24 target modulation assays and R²(ext) = 0.41 for 18 cell proliferation assays. The 2D Profile-QSAR, along with the 3D Surrogate AutoShim, are the foundations of an internally developed iterative medium-throughput screening (IMTS) methodology for virtual screening (VS) of compound archives as an alternative to experimental high-throughput screening (HTS). The method has been applied to 20 actual prospective kinase projects. Biological results have so far been obtained in eight of them. Q² values ranged from 0.3 to 0.7. Hit-rates at 10 uM for experimentally tested compounds varied from 25% to 80%, except in K5, which was a special case aimed specifically at finding "type II" binders, where none of the compounds were predicted to be active at 10 μM. These overall results are particularly striking as chemical novelty was an important criterion in selecting compounds for testing. The method is completely automated. Predicted activities for nearly 4 million internal and commercial compounds across 115 kinase assays and 42 cellular assays are stored in the corporate database. Like computed physical properties, this predicted kinase activity profile can be computed and stored as each compound is registered.

摘要

Profile-QSAR 是一种新颖的 2D 预测激酶模型构建方法。这种“元 QSAR”方法将每个化合物对新激酶靶标的活性建模为其对由 115 个测定组成的 92 个先前研究激酶的大面板的预测活性的线性组合。Profile-QSAR 从稀疏的不完整激酶-化合物 (KxC) 活性矩阵开始,用于为 92 个“基础集”激酶生成贝叶斯 QSAR 模型。这些贝叶斯 QSAR 生成完整的“合成”KxC 活性矩阵预测。这些合成活性用作训练偏最小二乘 (PLS) 模型的“化学描述符”,从中等数量的高通量筛选数据中,用于预测对新激酶的活性。对 92 个激酶 (115 个测定) 的 Profile-QSAR 预测在 25%的保留测试集中得出中位数外部 R²(ext) = 0.59。该方法已被证明足够准确,可以预测两两激酶选择性,对于至少有 600 个共同化合物的 958 个激酶对,中位数相关性 R²(ext) = 0.61。它通过向 KxC 矩阵中添加“C(k)XC”细胞活性矩阵进一步扩展,以预测 42 个激酶驱动的细胞测定中的细胞活性,对于 24 个靶标调节测定,中位数 R²(ext) = 0.58,对于 18 个细胞增殖测定,中位数 R²(ext) = 0.41。二维 Profile-QSAR 与 3D Surrogate AutoShim 一起,是内部开发的迭代高通量筛选 (IMTS) 方法学的基础,用于化合物档案的虚拟筛选 (VS),作为实验高通量筛选 (HTS) 的替代方法。该方法已应用于 20 个实际的前瞻性激酶项目。到目前为止,已经在其中 8 个项目中获得了生物学结果。Q² 值范围从 0.3 到 0.7。在经过实验测试的化合物中,在 10 μM 时的命中率从 25%到 80%不等,除了 K5 外,K5 是一个专门旨在寻找“II 型”结合物的特殊案例,其中没有一种化合物在 10 μM 时被预测为具有活性。这些总体结果尤其引人注目,因为在选择进行测试的化合物时,化学新颖性是一个重要标准。该方法是完全自动化的。在 115 个激酶测定和 42 个细胞测定中,近 400 万种内部和商业化合物的预测活性都存储在公司数据库中。像计算物理性质一样,当每个化合物注册时,都可以计算和存储这种预测的激酶活性谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验