Spencer Liam P, MacKay Bruce A, Patrick Brian O, Fryzuk Michael D
Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1.
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17094-8. doi: 10.1073/pnas.0602132103. Epub 2006 Oct 18.
Activation of molecular nitrogen by transition metal complexes is an area of current interest as investigations using the inert N2 molecule to produce higher-value organonitrogen compounds intensify. In an attempt to extend the addition of hydride reagents E-H (where E = BR2, AlR2, and SiR3) to the dinitrogen complex ([NPN]Ta)2(mu-H)2(mu-eta1:eta2-N2) [1; where NPN = (PhNSiMe2CH2)2PPh], the reaction with zirconocene chlorohydride, [Cp2Zr(Cl)H]x, was examined. The crystalline product formed in 35% yield was determined to be ([NP(N)N]Ta)(mu-H)2(mu-N)(Ta[NPN])(ZrCp2) (2) in which the coordinated N2 has been cleaved to form a phosphinimide bridging between Ta and Zr and a triply bridging nitride. The mechanism of this reaction was examined to determine the fate of the chloride and hydride ligands attached to Zr in the starting zirconocene reagent. Using the zirconocene dihydride dimer ([Cp2ZrH2]2), a higher yield of 2 was obtained (76%), and H2 was also observed by 1H NMR spectroscopy. To probe the origin of the eliminated H2, the dideuterated dinitrogen complex ([NPN]Ta)2(mu-D)2(mu-eta1:eta2-N2) (d2-1) was allowed to react with ([Cp2ZrH2]2), which resulted in the formation of ([NP(N)N]Ta)(mu-D)2(mu-N)(Ta[NPN])(ZrCp2), (d2-2), with no evidence of hydrogen for deuterium scrambling between the starting zirconocene dihydride and the ditantalum dinitrogen complex. Studies into the use of preformed Zr(II) and Ti(II) reagents were also performed. The proposed mechanism involves initial adduct formation that facilitates inner-sphere electron transfer to cleave the N-N bond to form a species with bridging nitrides, one of which is transformed by nucleophilic attack of a phosphine donor to generate the observed phosphinimide.
随着利用惰性N₂分子生产高价值有机氮化合物的研究不断深入,过渡金属配合物对分子氮的活化成为当前一个备受关注的领域。为了将氢化物试剂E-H(其中E = BR₂、AlR₂和SiR₃)加成到二氮配合物([NPN]Ta)₂(μ-H)₂(μ-η¹:η²-N₂) [1;其中NPN = (PhNSiMe₂CH₂)₂PPh]上,研究了其与二氯氢化锆([Cp₂Zr(Cl)H])ₓ的反应。以35%的产率形成的结晶产物被确定为([NP(N)N]Ta)(μ-H)₂(μ-N)(Ta[NPN])(ZrCp₂) (2),其中配位的N₂已被裂解,形成了一个在Ta和Zr之间桥连的磷酰亚胺以及一个三重桥连的氮化物。对该反应的机理进行了研究,以确定起始二氯氢化锆试剂中与Zr相连的氯和氢配体的去向。使用二氢锆二聚体([Cp₂ZrH₂])₂,得到了更高产率的2(76%),并且通过¹H NMR光谱也观察到了H₂。为了探究消除的H₂的来源,使二氘代二氮配合物([NPN]Ta)₂(μ-D)₂(μ-η¹:η²-N₂) (d₂-1)与([Cp₂ZrH₂])₂反应,结果形成了([NP(N)N]Ta)(μ-D)₂(μ-N)(Ta[NPN])(ZrCp₂),(d₂-2),没有证据表明起始二氢锆和二钽二氮配合物之间存在氢与氘的交换。还对预制的Zr(II)和Ti(II)试剂的使用进行了研究。提出的机理涉及最初的加合物形成,这有助于内球电子转移以裂解N-N键,形成具有桥连氮化物的物种,其中之一通过膦供体的亲核攻击而转化,生成观察到的磷酰亚胺。