Burke Kelly, Cheng Yinghong, Li Baogang, Petrov Alex, Joshi Pushkar, Berman Robert F, Reuhl Kenneth R, DiCicco-Bloom Emanuel
Department of Neuroscience & Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
Neurotoxicology. 2006 Dec;27(6):970-81. doi: 10.1016/j.neuro.2006.09.001. Epub 2006 Sep 15.
The developing brain is highly sensitive to methylmercury (MeHg). Still, the initial changes in cell proliferation that may contribute to long-term MeHg effects are largely undefined. Our previous studies with growth factors indicate that acute alterations of the G1/S-phase transition can permanently affect cell numbers and organ size. Therefore, we determined whether an environmental toxicant could also impact brain development with rapid (6-7h) effects on DNA synthesis and cell cycle machinery in neuronal precursors. In vivo studies in newborn rat hippocampus and cerebellum, two regions of postnatal neurogenesis, were followed by in vitro analysis of two precursor models, cortical and cerebellar cells, focusing on the proteins that regulate the G1/S transition. In postnatal day 7 (P7) pups, a single subcutaneous injection of MeHg (3microg/g) acutely (7h) decreased DNA synthesis in the hippocampus by 40% and produced long-term (2 weeks) reductions in total cell number, estimated by DNA quantification. Surprisingly, cerebellar granule cells were resistant to MeHg effects in vivo at comparable tissue concentrations, suggesting region-specific differences in precursor populations. In vitro, MeHg altered proliferation and cell viability, with DNA synthesis selectively inhibited at an early timepoint (6h) corresponding to our in vivo observations. Considering that G1/S regulators are targets of exogenous signals, we used a well-defined cortical cell model to examine MeHg effects on relevant cyclin-dependent kinases (CDK) and CDK inhibitors. At 6h, MeHg decreased by 75% levels of cyclin E, a cell cycle regulator with roles in proliferation and apoptosis, without altering p57, p27, or CDK2 nor levels of activated caspase 3. In aggregate, our observations identify the G1/S transition as an early target of MeHg toxicity and raise the possibility that cyclin E degradation contributes to both decreased proliferation and eventual cell death.
发育中的大脑对甲基汞(MeHg)高度敏感。然而,可能导致甲基汞长期影响的细胞增殖的初始变化在很大程度上尚不明确。我们之前对生长因子的研究表明,G1/S期转换的急性改变可永久影响细胞数量和器官大小。因此,我们确定一种环境毒物是否也能通过对神经前体细胞中DNA合成和细胞周期机制产生快速(6 - 7小时)影响来影响大脑发育。在新生大鼠海马体和小脑(出生后神经发生的两个区域)进行体内研究,随后对两种前体细胞模型(皮质细胞和小脑细胞)进行体外分析,重点关注调节G1/S转换的蛋白质。在出生后第7天(P7)的幼崽中,单次皮下注射甲基汞(3微克/克)在急性(7小时)时使海马体中的DNA合成减少了40%,并通过DNA定量估计使总细胞数量产生长期(2周)减少。令人惊讶的是,在可比的组织浓度下,小脑颗粒细胞在体内对甲基汞的影响具有抗性,这表明前体细胞群体存在区域特异性差异。在体外,甲基汞改变了增殖和细胞活力,DNA合成在与我们体内观察结果相对应的早期时间点(6小时)被选择性抑制。鉴于G1/S调节因子是外源性信号的靶点,我们使用一个明确的皮质细胞模型来研究甲基汞对相关细胞周期蛋白依赖性激酶(CDK)和CDK抑制剂的影响。在6小时时,甲基汞使细胞周期蛋白E水平降低了75%,细胞周期蛋白E是一种在增殖和凋亡中起作用的细胞周期调节因子,而没有改变p57、p27或CDK2,也没有改变活化的半胱天冬酶3的水平。总体而言,我们的观察结果确定G1/S转换是甲基汞毒性的早期靶点,并提出细胞周期蛋白E降解可能导致增殖减少和最终细胞死亡的可能性。