Suppr超能文献

相似文献

1
Tissue-specific Nrf2 signaling protects against methylmercury toxicity in Drosophila neuromuscular development.
Arch Toxicol. 2020 Dec;94(12):4007-4022. doi: 10.1007/s00204-020-02879-z. Epub 2020 Aug 20.
2
Methylmercury myotoxicity targets formation of the myotendinous junction.
Toxicology. 2020 Oct;443:152561. doi: 10.1016/j.tox.2020.152561. Epub 2020 Aug 13.
4
The Notch target E(spl)mδ is a muscle-specific gene involved in methylmercury toxicity in motor neuron development.
Neurotoxicol Teratol. 2014 May-Jun;43:11-8. doi: 10.1016/j.ntt.2014.03.001. Epub 2014 Mar 13.
6
Neuroligin-1 Is a Mediator of Methylmercury Neuromuscular Toxicity.
Toxicol Sci. 2021 Nov 24;184(2):236-251. doi: 10.1093/toxsci/kfab114.
7
Methylmercury disruption of embryonic neural development in Drosophila.
Neurotoxicology. 2009 Sep;30(5):794-802. doi: 10.1016/j.neuro.2009.04.006. Epub 2009 May 4.
8
The role of the Keap1/Nrf2 pathway in the cellular response to methylmercury.
Oxid Med Cell Longev. 2013;2013:848279. doi: 10.1155/2013/848279. Epub 2013 Jun 26.
9
Latent effects of early-life methylmercury exposure on motor function in Drosophila.
Neurotoxicol Teratol. 2021 Nov-Dec;88:107037. doi: 10.1016/j.ntt.2021.107037. Epub 2021 Oct 14.
10
The Nrf2-Keap1 pathway is activated by steroid hormone signaling to govern neuronal remodeling.
Cell Rep. 2021 Aug 3;36(5):109466. doi: 10.1016/j.celrep.2021.109466.

引用本文的文献

6
Gene expression variation underlying tissue-specific responses to copper stress in .
bioRxiv. 2023 Jul 18:2023.07.12.548746. doi: 10.1101/2023.07.12.548746.
7
8
Looking at Developmental Neurotoxicity Testing from the Perspective of an Invertebrate Embryo.
Int J Mol Sci. 2022 Feb 7;23(3):1871. doi: 10.3390/ijms23031871.
9
Latent effects of early-life methylmercury exposure on motor function in Drosophila.
Neurotoxicol Teratol. 2021 Nov-Dec;88:107037. doi: 10.1016/j.ntt.2021.107037. Epub 2021 Oct 14.
10
Neuroligin-1 Is a Mediator of Methylmercury Neuromuscular Toxicity.
Toxicol Sci. 2021 Nov 24;184(2):236-251. doi: 10.1093/toxsci/kfab114.

本文引用的文献

1
Reductive stress impairs myogenic differentiation.
Redox Biol. 2020 Jul;34:101492. doi: 10.1016/j.redox.2020.101492. Epub 2020 Mar 4.
2
Methylmercury modifies temporally expressed myogenic regulatory factors to inhibit myoblast differentiation.
Toxicol In Vitro. 2020 Mar;63:104717. doi: 10.1016/j.tiv.2019.104717. Epub 2019 Nov 6.
3
Environmental Electrophile-Mediated Toxicity in Mice Lacking Nrf2, CSE, or Both.
Environ Health Perspect. 2019 Jun;127(6):67002. doi: 10.1289/EHP4949. Epub 2019 Jun 5.
4
Nrf2/Keap1 Mediated Redox Signaling Supports Synaptic Function and Longevity and Impacts on Circadian Activity.
Front Mol Neurosci. 2019 Apr 16;12:86. doi: 10.3389/fnmol.2019.00086. eCollection 2019.
5
Hyperactivation of Nrf2 increases stress tolerance at the cost of aging acceleration due to metabolic deregulation.
Aging Cell. 2019 Feb;18(1):e12845. doi: 10.1111/acel.12845. Epub 2018 Dec 10.
6
Molecular Pathways Associated With Methylmercury-Induced Nrf2 Modulation.
Front Genet. 2018 Sep 12;9:373. doi: 10.3389/fgene.2018.00373. eCollection 2018.
9
Notch Target Gene E(spl)mδ Is a Mediator of Methylmercury-Induced Myotoxicity in .
Front Genet. 2018 Jan 15;8:233. doi: 10.3389/fgene.2017.00233. eCollection 2017.
10
Methylmercury exposure causes a persistent inhibition of myogenin expression and C2C12 myoblast differentiation.
Toxicology. 2018 Jan 15;393:113-122. doi: 10.1016/j.tox.2017.11.002. Epub 2017 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验