Szalay Viktor
Crystal Physics Laboratory, Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary.
J Chem Phys. 2006 Oct 21;125(15):154115. doi: 10.1063/1.2358979.
The method of optimal generalized finite basis and discrete variable representations (FBR and DVR) generalizes the standard, Gaussian quadrature grid-classical orthonormal polynomial basis-based FBR/DVR method to general sets of grid points and to general, nondirect product, and/or nonpolynomial bases. Here, it is shown how an optimal set of grid points can be obtained for an optimal generalized FBR/DVR calculation with a given truncated basis. Basis set optimized and potential optimized grids are defined. The optimized grids are shown to minimize a function of grid points derived by relating the optimal generalized FBR of a Hamiltonian operator to a non-Hermitian effective Hamiltonian matrix. Locating the global minimum of this function can be reduced to finding the zeros of a function in the case of one dimensional problems and to solving a system of D nonlinear equations repeatedly in the case of D>1 dimensional problems when there is an equal number of grid points and basis functions. Gaussian quadrature grids are shown to be basis optimized grids. It is demonstrated by a numerical example that an optimal generalized FBR/DVR calculation of the eigenvalues of a Hamiltonian operator with potential optimized grids can have orders of magnitude higher accuracy than a variational calculation employing the same truncated basis. Nevertheless, for numerical integration with the optimal generalized FBR quadrature rule basis optimized grids are the best among grids of the same number of points. The notions of Gaussian quadrature and Gaussian quadrature accuracy are extended to general, multivariable basis functions.
最优广义有限基和离散变量表示法(FBR和DVR)将标准的基于高斯求积网格 - 经典正交多项式基的FBR/DVR方法推广到一般的网格点集以及一般的、非直积的和/或非多项式基。在此,展示了如何针对给定截断基的最优广义FBR/DVR计算获得一组最优网格点。定义了基组优化网格和势优化网格。通过将哈密顿算符的最优广义FBR与一个非厄米有效哈密顿矩阵相关联,证明优化网格能使一个关于网格点的函数最小化。在一维问题中,找到该函数的全局最小值可归结为找到一个函数的零点;在D>1维问题中,当网格点数量和基函数数量相等时,可归结为反复求解一个D元非线性方程组。高斯求积网格被证明是基组优化网格。通过一个数值例子表明,使用势优化网格对哈密顿算符的本征值进行最优广义FBR/DVR计算,其精度可能比使用相同截断基的变分计算高几个数量级。然而,对于使用最优广义FBR求积规则的数值积分,基组优化网格在相同点数的网格中是最好的。高斯求积和高斯求积精度的概念被扩展到一般的多变量基函数。