Czakó Gábor, Szalay Viktor, Császár Attila G
Institute of Chemistry, Eötvös University, P.O. Box 32, H-1518 Budapest 112, Hungary.
J Chem Phys. 2006 Jan 7;124(1):14110. doi: 10.1063/1.2141947.
The currently most efficient finite basis representation (FBR) method [Corey et al., in Numerical Grid Methods and Their Applications to Schrodinger Equation, NATO ASI Series C, edited by C. Cerjan (Kluwer Academic, New York, 1993), Vol. 412, p. 1; Bramley et al., J. Chem. Phys. 100, 6175 (1994)] designed specifically to deal with nondirect product bases of structures phi(n) (l)(s)f(l)(u), chi(m) (l)(t)phi(n) (l)(s)f(l)(u), etc., employs very special l-independent grids and results in a symmetric FBR. While highly efficient, this method is not general enough. For instance, it cannot deal with nondirect product bases of the above structure efficiently if the functions phi(n) (l)(s) [and/or chi(m) (l)(t)] are discrete variable representation (DVR) functions of the infinite type. The optimal-generalized FBR(DVR) method [V. Szalay, J. Chem. Phys. 105, 6940 (1996)] is designed to deal with general, i.e., direct and/or nondirect product, bases and grids. This robust method, however, is too general, and its direct application can result in inefficient computer codes [Czako et al., J. Chem. Phys. 122, 024101 (2005)]. It is shown here how the optimal-generalized FBR method can be simplified in the case of nondirect product bases of structures phi(n) (l)(s)f(l)(u), chi(m) (l)(t)phi(n) (l)(s)f(l)(u), etc. As a result the commonly used symmetric FBR is recovered and simplified nonsymmetric FBRs utilizing very special l-dependent grids are obtained. The nonsymmetric FBRs are more general than the symmetric FBR in that they can be employed efficiently even when the functions phi(n) (l)(s) [and/or chi(m) (l)(t)] are DVR functions of the infinite type. Arithmetic operation counts and a simple numerical example presented show unambiguously that setting up the Hamiltonian matrix requires significantly less computer time when using one of the proposed nonsymmetric FBRs than that in the symmetric FBR. Therefore, application of this nonsymmetric FBR is more efficient than that of the symmetric FBR when one wants to diagonalize the Hamiltonian matrix either by a direct or via a basis-set contraction method. Enormous decrease of computer time can be achieved, with respect to a direct application of the optimal-generalized FBR, by employing one of the simplified nonsymmetric FBRs as is demonstrated in noniterative calculations of the low-lying vibrational energy levels of the H3+ molecular ion. The arithmetic operation counts of the Hamiltonian matrix vector products and the properties of a recently developed diagonalization method [Andreozzi et al., J. Phys. A Math. Gen. 35, L61 (2002)] suggest that the nonsymmetric FBR applied along with this particular diagonalization method is suitable to large scale iterative calculations. Whether or not the nonsymmetric FBR is competitive with the symmetric FBR in large-scale iterative calculations still has to be investigated numerically.
当前最有效的有限基表示(FBR)方法[科里等人,《数值网格方法及其在薛定谔方程中的应用》,北约先进科学研究所系列C,由C. 塞尔扬编辑(克鲁维尔学术出版社,纽约,1993年),第412卷,第1页;布拉姆利等人,《化学物理杂志》100, 6175 (1994)]专门设计用于处理结构为φ(n)(l)(s)f(l)(u)、χ(m)(l)(t)φ(n)(l)(s)f(l)(u)等的非直积基,该方法采用非常特殊的与l无关的网格,并得到一个对称的FBR。虽然该方法效率很高,但通用性不足。例如,如果函数φ(n)(l)(s)[和/或χ(m)(l)(t)]是无限类型的离散变量表示(DVR)函数,那么它就不能有效地处理上述结构的非直积基。最优广义FBR(DVR)方法[V. 萨莱,《化学物理杂志》105, 6940 (1996)]旨在处理一般的,即直积和/或非直积的基与网格。然而,这种强大的方法过于通用,其直接应用可能导致计算机代码效率低下[查科等人,《化学物理杂志》122, 024101 (2005)]。本文展示了在结构为φ(n)(l)(s)f(l)(u)、χ(m)(l)(t)φ(n)(l)(s)f(l)(u)等的非直积基的情况下,最优广义FBR方法如何简化。结果恢复了常用的对称FBR,并得到了利用非常特殊的与l有关的网格的简化非对称FBR。非对称FBR比对称FBR更通用,因为即使函数φ(n)(l)(s)[和/或χ(m)(l)(t)]是无限类型的DVR函数,它们也能有效地应用。给出的算术运算次数和一个简单的数值例子明确表明,使用所提出的非对称FBR之一来建立哈密顿矩阵所需的计算机时间比对称FBR要少得多。因此,当想要通过直接或通过基组收缩方法对角化哈密顿矩阵时,这种非对称FBR的应用比对称FBR更有效。通过使用简化的非对称FBR之一,相对于最优广义FBR的直接应用,可以实现计算机时间的大幅减少,这在H3+分子离子低振动能级的非迭代计算中得到了证明。哈密顿矩阵向量乘积的算术运算次数以及最近开发的对角化方法[安德烈奥齐等人,《物理学报A:数学与一般物理》35, L61 (2002)]的性质表明,与这种特定对角化方法一起应用的非对称FBR适用于大规模迭代计算。非对称FBR在大规模迭代计算中是否与对称FBR具有竞争力仍有待数值研究。