Wan Ji, Liu Wen, Xu Qiqi, Ren Yongliang, Flower Darren R, Li Tongbin
Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
BMC Bioinformatics. 2006 Oct 23;7:463. doi: 10.1186/1471-2105-7-463.
The binding between antigenic peptides (epitopes) and the MHC molecule is a key step in the cellular immune response. Accurate in silico prediction of epitope-MHC binding affinity can greatly expedite epitope screening by reducing costs and experimental effort.
Recently, we demonstrated the appealing performance of SVRMHC, an SVR-based quantitative modeling method for peptide-MHC interactions, when applied to three mouse class I MHC molecules. Subsequently, we have greatly extended the construction of SVRMHC models and have established such models for more than 40 class I and class II MHC molecules. Here we present the SVRMHC web server for predicting peptide-MHC binding affinities using these models. Benchmarked percentile scores are provided for all predictions. The larger number of SVRMHC models available allowed for an updated evaluation of the performance of the SVRMHC method compared to other well- known linear modeling methods.
SVRMHC is an accurate and easy-to-use prediction server for epitope-MHC binding with significant coverage of MHC molecules. We believe it will prove to be a valuable resource for T cell epitope researchers.
抗原肽(表位)与MHC分子之间的结合是细胞免疫反应中的关键步骤。通过计算机准确预测表位与MHC的结合亲和力,可通过降低成本和减少实验工作量极大地加快表位筛选进程。
最近,我们展示了SVRMHC(一种基于支持向量回归的肽与MHC相互作用定量建模方法)在应用于三种小鼠I类MHC分子时的出色性能。随后,我们大幅扩展了SVRMHC模型的构建,并为40多种I类和II类MHC分子建立了此类模型。在此,我们展示了使用这些模型预测肽与MHC结合亲和力的SVRMHC网络服务器。为所有预测提供了基准百分位数分数。与其他知名线性建模方法相比,更多可用的SVRMHC模型使得对SVRMHC方法性能的评估得以更新。
SVRMHC是一个准确且易于使用的预测服务器,用于预测表位与MHC的结合,对MHC分子具有显著的覆盖范围。我们相信它将被证明是T细胞表位研究人员的宝贵资源。