Degoot Abdoelnaser M, Chirove Faraimunashe, Ndifon Wilfred
African Institute of Mathematical Sciences (AIMS), Muizenberg, South Africa.
School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
Front Immunol. 2018 Jun 20;9:1410. doi: 10.3389/fimmu.2018.01410. eCollection 2018.
Major histocompatibility complex class two (MHC-II) molecules are trans-membrane proteins and key components of the cellular immune system. Upon recognition of foreign peptides expressed on the MHC-II binding groove, CD4 T cells mount an immune response against invading pathogens. Therefore, mechanistic identification and knowledge of physicochemical features that govern interactions between peptides and MHC-II molecules is useful for the design of effective epitope-based vaccines, as well as for understanding of immune responses. In this article, we present a comprehensive trans-allelic prediction model, a generalized version of our previous biophysical model, that can predict peptide interactions for all three human MHC-II loci (HLA-DR, HLA-DP, and HLA-DQ), using both peptide sequence data and structural information of MHC-II molecules. The advantage of this approach over other machine learning models is that it offers a simple and plausible physical explanation for peptide-MHC-II interactions. We train the model using a benchmark experimental dataset and measure its predictive performance using novel data. Despite its relative simplicity, we find that the model has comparable performance to the state-of-the-art method, the NetMHCIIpan method. Focusing on the physical basis of peptide-MHC binding, we find support for previous theoretical predictions about the contributions of certain binding pockets to the binding energy. In addition, we find that binding pocket 5 of HLA-DP, which was not previously considered as a primary anchor, does make strong contribution to the binding energy. Together, the results indicate that our model can serve as a useful complement to alternative approaches to predicting peptide-MHC interactions.
主要组织相容性复合体II类(MHC-II)分子是跨膜蛋白,也是细胞免疫系统的关键组成部分。在识别MHC-II结合槽上表达的外来肽段后,CD4 T细胞会针对入侵病原体发起免疫反应。因此,确定肽段与MHC-II分子相互作用的机制并了解其物理化学特征,对于设计有效的基于表位的疫苗以及理解免疫反应都很有用。在本文中,我们提出了一个全面的跨等位基因预测模型,它是我们之前生物物理模型的通用版本,该模型可以利用肽段序列数据和MHC-II分子的结构信息,预测人类所有三个MHC-II基因座(HLA-DR、HLA-DP和HLA-DQ)的肽段相互作用。与其他机器学习模型相比,这种方法的优势在于它为肽段与MHC-II的相互作用提供了简单且合理的物理解释。我们使用一个基准实验数据集对模型进行训练,并使用新数据来衡量其预测性能。尽管该模型相对简单,但我们发现它的性能与最先进的方法NetMHCIIpan方法相当。聚焦于肽段与MHC结合的物理基础,我们发现了对先前关于某些结合口袋对结合能贡献的理论预测的支持。此外,我们发现之前未被视为主要锚定位点的HLA-DP的结合口袋5,确实对结合能有很大贡献。总之,结果表明我们的模型可以作为预测肽段与MHC相互作用的其他方法的有用补充。