Suppr超能文献

Goulphar:标准双色微阵列标准化方法的快速获取与专业知识

Goulphar: rapid access and expertise for standard two-color microarray normalization methods.

作者信息

Lemoine Sophie, Combes Florence, Servant Nicolas, Le Crom Stéphane

机构信息

IFR36, Plate-forme Transcriptome, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris cedex05, France.

出版信息

BMC Bioinformatics. 2006 Oct 23;7:467. doi: 10.1186/1471-2105-7-467.

Abstract

BACKGROUND

Raw data normalization is a critical step in microarray data analysis because it directly affects data interpretation. Most of the normalization methods currently used are included in the R/BioConductor packages but it is often difficult to identify the most appropriate method. Furthermore, the use of R commands for functions and graphics can introduce mistakes that are difficult to trace. We present here a script written in R that provides a flexible means of access to and monitoring of data normalization for two-color microarrays. This script combines the power of BioConductor and R analysis functions and reduces the amount of R programming required.

RESULTS

Goulphar was developed in and runs using the R language and environment. It combines and extends functions found in BioConductor packages (limma and marray) to correct for dye biases and spatial artifacts. Goulphar provides a wide range of optional and customizable filters for excluding incorrect signals during the pre-processing step. It displays informative output plots, enabling the user to monitor the normalization process, and helps adapt the normalization method appropriately to the data. All these analyses and graphical outputs are presented in a single PDF report.

CONCLUSION

Goulphar provides simple, rapid access to the power of the R/BioConductor statistical analysis packages, with precise control and visualization of the results obtained. Complete documentation, examples and online forms for setting script parameters are available from http://transcriptome.ens.fr/goulphar/.

摘要

背景

原始数据归一化是微阵列数据分析中的关键步骤,因为它直接影响数据解读。目前使用的大多数归一化方法都包含在R/BioConductor软件包中,但通常很难确定最合适的方法。此外,使用R命令进行函数和图形操作可能会引入难以追踪的错误。我们在此展示一个用R编写的脚本,它为双色微阵列的数据归一化提供了一种灵活的访问和监测方式。该脚本结合了BioConductor和R分析功能的强大之处,并减少了所需的R编程量。

结果

Goulphar是用R语言和环境开发并运行的。它结合并扩展了BioConductor软件包(limma和marray)中的功能,以校正染料偏差和空间伪影。Goulphar在预处理步骤中提供了广泛的可选和可定制过滤器,用于排除不正确的信号。它显示信息丰富的输出图,使用户能够监测归一化过程,并有助于使归一化方法适当地适应数据。所有这些分析和图形输出都呈现在一份单一的PDF报告中。

结论

Goulphar提供了对R/BioConductor统计分析软件包强大功能的简单、快速访问,对所得结果进行精确控制和可视化。完整的文档、示例以及用于设置脚本参数的在线表单可从http://transcriptome.ens.fr/goulphar/获取。

相似文献

1
Goulphar: rapid access and expertise for standard two-color microarray normalization methods.
BMC Bioinformatics. 2006 Oct 23;7:467. doi: 10.1186/1471-2105-7-467.
2
MAnGO: an interactive R-based tool for two-colour microarray analysis.
Bioinformatics. 2007 Sep 1;23(17):2339-41. doi: 10.1093/bioinformatics/btm321. Epub 2007 Jun 22.
3
CALIB: a Bioconductor package for estimating absolute expression levels from two-color microarray data.
Bioinformatics. 2007 Jul 1;23(13):1700-1. doi: 10.1093/bioinformatics/btm159. Epub 2007 May 7.
4
Ringo--an R/Bioconductor package for analyzing ChIP-chip readouts.
BMC Bioinformatics. 2007 Jun 26;8:221. doi: 10.1186/1471-2105-8-221.
5
WebArray: an online platform for microarray data analysis.
BMC Bioinformatics. 2005 Dec 21;6:306. doi: 10.1186/1471-2105-6-306.
6
oneChannelGUI: a graphical interface to Bioconductor tools, designed for life scientists who are not familiar with R language.
Bioinformatics. 2007 Dec 15;23(24):3406-8. doi: 10.1093/bioinformatics/btm469. Epub 2007 Sep 17.
7
MArray: analysing single, replicated or reversed microarray experiments.
Bioinformatics. 2002 Aug;18(8):1139-40. doi: 10.1093/bioinformatics/18.8.1139.
8
Assessing probe-specific dye and slide biases in two-color microarray data.
BMC Bioinformatics. 2008 Jul 19;9:314. doi: 10.1186/1471-2105-9-314.
9
arrayQCplot: software for checking the quality of microarray data.
Bioinformatics. 2006 Sep 15;22(18):2305-7. doi: 10.1093/bioinformatics/btl367. Epub 2006 Jul 24.
10
A comparison of background correction methods for two-colour microarrays.
Bioinformatics. 2007 Oct 15;23(20):2700-7. doi: 10.1093/bioinformatics/btm412. Epub 2007 Aug 25.

引用本文的文献

2
Functional mapping of N-terminal residues in the yeast proteome uncovers novel determinants for mitochondrial protein import.
PLoS Genet. 2023 Aug 16;19(8):e1010848. doi: 10.1371/journal.pgen.1010848. eCollection 2023 Aug.
3
Yap5 Competes With Hap4 for the Regulation of Iron Homeostasis Genes in the Human Pathogen .
Front Cell Infect Microbiol. 2021 Nov 26;11:731988. doi: 10.3389/fcimb.2021.731988. eCollection 2021.
4
Comparative Transcriptomics Highlights New Features of the Iron Starvation Response in the Human Pathogen .
Front Microbiol. 2018 Nov 16;9:2689. doi: 10.3389/fmicb.2018.02689. eCollection 2018.
6
Drawing Links from Transcriptome to Metabolites: The Evolution of Aroma in the Ripening Berry of Moscato Bianco ( L.).
Front Plant Sci. 2017 May 16;8:780. doi: 10.3389/fpls.2017.00780. eCollection 2017.
7
Tma108, a putative M1 aminopeptidase, is a specific nascent chain-associated protein in Saccharomyces cerevisiae.
Nucleic Acids Res. 2016 Oct 14;44(18):8826-8841. doi: 10.1093/nar/gkw732. Epub 2016 Aug 31.
8
A Network of Paralogous Stress Response Transcription Factors in the Human Pathogen Candida glabrata.
Front Microbiol. 2016 May 9;7:645. doi: 10.3389/fmicb.2016.00645. eCollection 2016.
9
Diatom Phytochromes Reveal the Existence of Far-Red-Light-Based Sensing in the Ocean.
Plant Cell. 2016 Mar;28(3):616-28. doi: 10.1105/tpc.15.00928. Epub 2016 Mar 3.

本文引用的文献

1
CARMAweb: comprehensive R- and bioconductor-based web service for microarray data analysis.
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W498-503. doi: 10.1093/nar/gkl038.
2
WebArray: an online platform for microarray data analysis.
BMC Bioinformatics. 2005 Dec 21;6:306. doi: 10.1186/1471-2105-6-306.
3
MIDAW: a web tool for statistical analysis of microarray data.
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W644-9. doi: 10.1093/nar/gki497.
4
Standardizing global gene expression analysis between laboratories and across platforms.
Nat Methods. 2005 May;2(5):351-6. doi: 10.1038/nmeth754. Epub 2005 Apr 21.
5
Multiple-laboratory comparison of microarray platforms.
Nat Methods. 2005 May;2(5):345-50. doi: 10.1038/nmeth756. Epub 2005 Apr 21.
7
The effect of normalization on microarray data analysis.
DNA Cell Biol. 2004 Oct;23(10):635-42. doi: 10.1089/dna.2004.23.635.
8
Bioconductor: open software development for computational biology and bioinformatics.
Genome Biol. 2004;5(10):R80. doi: 10.1186/gb-2004-5-10-r80. Epub 2004 Sep 15.
9
limmaGUI: a graphical user interface for linear modeling of microarray data.
Bioinformatics. 2004 Dec 12;20(18):3705-6. doi: 10.1093/bioinformatics/bth449. Epub 2004 Aug 5.
10
DNMAD: web-based diagnosis and normalization for microarray data.
Bioinformatics. 2004 Dec 12;20(18):3656-8. doi: 10.1093/bioinformatics/bth401. Epub 2004 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验