Pisareva Vera P, Pisarev Andrey V, Hellen Christopher U T, Rodnina Marina V, Pestova Tatyana V
Department of Microbiology and Immunology, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA.
J Biol Chem. 2006 Dec 29;281(52):40224-35. doi: 10.1074/jbc.M607461200. Epub 2006 Oct 24.
Eukaryotic translation termination is mediated by two release factors: eRF1 recognizes stop codons and triggers peptidyl-tRNA hydrolysis, whereas eRF3 accelerates this process in a GTP-dependent manner. Here we report kinetic analysis of guanine nucleotide binding to eRF3 performed by fluorescence stopped-flow technique using GTP/GDP derivatives carrying the fluorescent methylanthraniloyl (mant-) group, as well as thermodynamic analysis of eRF3 binding to unlabeled guanine nucleotides. Whereas the kinetics of eRF3 binding to mant-GDP is consistent with a one-step binding model, the double-exponential transients of eRF3 binding to mant-GTP indicate a two-step binding mechanism, in which the initial eRF3.mant-GTP complex undergoes subsequent conformational change. The affinity of eRF3 for GTP (K(d), approximately 70 microM) is about 70-fold lower than for GDP (K(d), approximately 1 microM) and both nucleotides dissociate rapidly from eRF3 (k(-1)(mant-GDP) approximately 2.4 s(-1); k(-2)(mant-GTP) approximately 3.3 s(-1)). Whereas not influencing eRF3 binding to GDP, association of eRF3 with eRF1 at physiological Mg(2+) concentrations specifically changes the kinetics of eRF3/mant-GTP interaction and stabilizes eRF3.GTP binding by two orders of magnitude (K(d) approximately 0.7 microM) due to lowering of the dissociation rate constant approximately 24-fold (k(-1)(mant-GTP) approximately 0.14s(-1) approximately 0.14 s(-1)). Thus, eRF1 acts as a GTP dissociation inhibitor (TDI) for eRF3, promoting efficient ribosomal recruitment of its GTP-bound form. 80 S ribosomes did not influence guanine nucleotide binding/exchange on the eRF1 x eRF3 complex. Guanine nucleotide binding and exchange on eRF3, which therefore depends on stimulation by eRF1, is entirely different from that on prokaryotic RF3 and unusual among GTPases.
eRF1识别终止密码子并触发肽基 - tRNA水解,而eRF3以GTP依赖的方式加速这一过程。在此,我们报告了使用携带荧光甲基邻氨基苯甲酰基(mant-)基团的GTP/GDP衍生物,通过荧光停流技术对鸟嘌呤核苷酸与eRF3结合进行的动力学分析,以及eRF3与未标记鸟嘌呤核苷酸结合的热力学分析。虽然eRF3与mant - GDP结合的动力学符合一步结合模型,但eRF3与mant - GTP结合的双指数瞬变表明存在两步结合机制,其中初始的eRF3·mant - GTP复合物会发生后续构象变化。eRF3对GTP的亲和力(K(d),约70 microM)比对GDP的亲和力(K(d),约1 microM)低约70倍,并且两种核苷酸都能快速从eRF3上解离(k(-1)(mant - GDP)约2.4 s(-1);k(-2)(mant - GTP)约3.3 s(-1))。在生理Mg(2+)浓度下,eRF3与eRF1的结合虽不影响eRF3与GDP的结合,但会特异性改变eRF3/mant - GTP相互作用的动力学,并使eRF3·GTP结合稳定两个数量级(K(d)约0.7 microM),这是由于解离速率常数降低了约24倍(k(-1)(mant - GTP)约0.14 s(-1))。因此,eRF1作为eRF3的GTP解离抑制剂(TDI),促进其GTP结合形式在核糖体上的有效募集。80 S核糖体不影响eRF1×eRF3复合物上鸟嘌呤核苷酸的结合/交换。因此,依赖于eRF1刺激的eRF3上的鸟嘌呤核苷酸结合和交换与原核生物RF3上的完全不同,在GTP酶中也不常见。