Milan J L, Wendling-Mansuy S, Jean M, Chabrand P
CNRS-USR 2164 Laboratoire d'Aérodynamique et de Biomécanique du Mouvement, Parc Scientifique et Technologique de Luminy, 13288, Marseille Cedex 9, France.
Biomech Model Mechanobiol. 2007 Nov;6(6):373-90. doi: 10.1007/s10237-006-0057-7. Epub 2006 Oct 25.
Cell deformability and mechanical responses of living cells depend closely on the dynamic changes in the structural architecture of the cytoskeleton (CSK). To describe the dynamic reorganization and the heterogeneity of the prestressed multi-modular CSK, we developed a two-dimensional model for the CSK which was taken to be a system of tension and compression interactions between the nodes in a divided medium. The model gives the dynamic reorganization of the CSK consisting of fast changes in connectivity between nodes during medium deformation and the resulting mechanical behavior is consistent with the strain-hardening and prestress-induced stiffening observed in cells in vitro. In addition, the interaction force networks which occur and balance to each other in the model can serve to identify the main CSK substructures: cortex, stress fibers, intermediate filaments, microfilaments, microtubules and focal adhesions. Removing any of these substructures results in a loss of integrity in the model and a decrease in the prestress and stiffness, and suggests that the CSK substructures are highly interdependent. The present model may therefore provide a useful tool for understanding the cellular processes involving CSK reorganization, such as mechanotransduction, migration and adhesion processes.
活细胞的细胞变形能力和力学响应与细胞骨架(CSK)结构体系的动态变化密切相关。为了描述预应力多模块CSK的动态重组及其异质性,我们开发了一种二维CSK模型,该模型被视为一种在分隔介质中节点间存在拉伸和压缩相互作用的系统。该模型给出了CSK的动态重组情况,包括介质变形过程中节点间连接性的快速变化,并且所产生的力学行为与体外细胞中观察到的应变硬化和预应力诱导的硬化现象一致。此外,模型中出现并相互平衡的相互作用力网络可用于识别主要的CSK子结构:皮质、应力纤维、中间丝、微丝、微管和粘着斑。去除这些子结构中的任何一个都会导致模型完整性丧失以及预应力和刚度降低,这表明CSK子结构高度相互依赖。因此,本模型可能为理解涉及CSK重组的细胞过程(如机械转导、迁移和粘附过程)提供一个有用的工具。