Elliott Sean J, Bradley Amy L, Arciero David M, Hooper Alan B
Department of Chemistry, 590 Commonwealth Ave. Boston, MA 02215, United States.
J Inorg Biochem. 2007 Jan;101(1):173-9. doi: 10.1016/j.jinorgbio.2006.09.009. Epub 2006 Sep 19.
The impact of protonation and inhibitor binding of the diheme cytochrome c peroxidase (CCP) from Nitrosomonas europaea has been examined by the technique of catalytic protein film voltammetry (PFV). Previous efforts have shown that the low-potential heme active site (L) binds substrate and yields electrocatalysis at an pyrolytic graphite edge electrode, with properties evocative of a high-potential intermediate, with E(m)>540mV (vs. normal hydrogen electrode) [A.L. Bradley, S.E. Chobot, D.M. Arciero, A.B. Hooper, S. J. Elliott, J. Biol. Chem. 279 (2004) 13297-13300]. Here we demonstrate through similar experiments that catalytic PFV generates limiting currents which allow for electrochemically-detected enzymology of the Ne CCP: such as the demonstration that pH-dependent Michaelis-Menten constants (K(m) values) reveal a pK(a) value of 6.5 associated with the "ES" complex. Further, the direct electrocatalysis is shown in the presence of known inhibitors (cyanide and azide), indicating that inhibitor binding occurs at L, and shifts the resulting catalytic midpoint potential in a negative direction. Michaelis-Menten treatment of the limiting currents generated in the presence of variable concentrations of inhibitors showed that cyanide behaved as a competitive inhibitor with a K(i) value of 0.15muM; azide revealed a mixed-mode of inhibition. The observed data were found to support a previous model of electrocatalysis, and the role of proton transfer chemistry in the active site is discussed in terms of a structural model.
利用催化蛋白质膜伏安法(PFV)研究了欧洲亚硝化单胞菌中二血红素细胞色素c过氧化物酶(CCP)的质子化和抑制剂结合的影响。先前的研究表明,低电位血红素活性位点(L)结合底物并在热解石墨边缘电极上产生电催化作用,其性质让人联想到高电位中间体,E(m)>540mV(相对于标准氢电极)[A.L.布拉德利、S.E.乔博特、D.M.阿奇罗、A.B.胡珀、S.J.埃利奥特,《生物化学杂志》279(2004)13297 - 13300]。在此,我们通过类似实验证明,催化PFV产生的极限电流可用于对欧洲亚硝化单胞菌CCP进行电化学检测酶学研究:例如,pH依赖性米氏常数(K(m)值)表明与“ES”复合物相关的pK(a)值为6.5。此外,在已知抑制剂(氰化物和叠氮化物)存在的情况下显示出直接电催化作用,表明抑制剂在L位点结合,并使产生的催化中点电位向负方向移动。对在不同浓度抑制剂存在下产生的极限电流进行米氏处理表明,氰化物表现为竞争性抑制剂,K(i)值为0.15μM;叠氮化物显示出混合抑制模式。观察到的数据支持先前的电催化模型,并根据结构模型讨论了活性位点中质子转移化学的作用。