Wintle B A, Bardos D C
Environmental Science Laboratory, School of Botany, University of Melbourne, Victoria, Australia.
Ecol Appl. 2006 Oct;16(5):1945-58. doi: 10.1890/1051-0761(2006)016[1945:msrwsa]2.0.co;2.
Spatial autocorrelation in wildlife observation data arises when extrinsic environmental processes and patterns that influence the spatial distribution of wildlife are themselves spatially structured, or when species are subject to intrinsic population processes, causing contagion or dispersion effects. Territoriality, Allee effects, dispersal limitations, and social clustering are examples of intrinsic processes. Both forms of autocorrelation can violate the assumptions of generalized linear regression models, resulting in biased estimation of model coefficients and diminished predictive performance. Such consequences may be avoided for extrinsic autocorrelation when autocorrelated environmental variables are available for use as model covariates, whereas intrinsic spatial autocorrelation requires an alternative modeling approach. The autologistic model provides an approach suited to the binary observations often obtained in wildlife surveys, but its performance has not been tested across widely varying sampling intensities or strengths of intrinsic spatial structure. Here we use simulated data to test the autologistic model under a range of sampling conditions. The autologistic model obtains better fits and substantially better predictive performance than the standard logistic regression model over the full range of sampling designs and intensities tested. We provide a simple Bayesian implementation of the autologistic model, which until now has not been achieved with standard statistical software alone. A step-by-step procedure is given for characterizing and modeling spatial autocorrelation in binary observation data, along with computer code for fitting autologistic models in WinBUGS, a freeware Bayesian analysis package. This approach avoids normal approximations to the pseudo-likelihood, in contrast to previous Bayesian applications of the autologistic model. We provide a sample application of the autologistic model, fitted to survey data for a gliding marsupial in southeastern Australia.
当影响野生动物空间分布的外在环境过程和模式本身具有空间结构时,或者当物种受到内在种群过程影响而产生聚集或扩散效应时,野生动物观测数据中就会出现空间自相关。领域性、阿利效应、扩散限制和社会聚集都是内在过程的例子。这两种自相关形式都可能违反广义线性回归模型的假设,导致模型系数估计有偏差,预测性能下降。当自相关环境变量可作为模型协变量使用时,外在自相关的这些后果可以避免,而内在空间自相关则需要采用替代建模方法。自逻辑模型提供了一种适用于野生动物调查中经常获得的二元观测值的方法,但其性能尚未在广泛变化的采样强度或内在空间结构强度下进行测试。在这里,我们使用模拟数据在一系列采样条件下测试自逻辑模型。在测试的所有采样设计和强度范围内,自逻辑模型比标准逻辑回归模型拟合得更好,预测性能也显著更好。我们提供了自逻辑模型的一个简单贝叶斯实现,而这在以前仅靠标准统计软件是无法实现的。给出了对二元观测数据中的空间自相关进行表征和建模的分步程序,以及在免费软件贝叶斯分析包WinBUGS中拟合自逻辑模型的计算机代码。与自逻辑模型以前的贝叶斯应用不同,这种方法避免了对伪似然的正态近似。我们提供了自逻辑模型的一个示例应用,该模型拟合了澳大利亚东南部一种滑翔有袋动物的调查数据。