Cook Alex, Marion Glenn, Butler Adam, Gibson Gavin
Department of Actuarial Mathematics and Statistics, and the Maxwell Institute, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland.
Bull Math Biol. 2007 Aug;69(6):2005-25. doi: 10.1007/s11538-007-9202-4. Epub 2007 Apr 25.
In this paper we develop a Bayesian approach to parameter estimation in a stochastic spatio-temporal model of the spread of invasive species across a landscape. To date, statistical techniques, such as logistic and autologistic regression, have outstripped stochastic spatio-temporal models in their ability to handle large numbers of covariates. Here we seek to address this problem by making use of a range of covariates describing the bio-geographical features of the landscape. Relative to regression techniques, stochastic spatio-temporal models are more transparent in their representation of biological processes. They also explicitly model temporal change, and therefore do not require the assumption that the species' distribution (or other spatial pattern) has already reached equilibrium as is often the case with standard statistical approaches. In order to illustrate the use of such techniques we apply them to the analysis of data detailing the spread of an invasive plant, Heracleum mantegazzianum, across Britain in the 20th Century using geo-referenced covariate information describing local temperature, elevation and habitat type. The use of Markov chain Monte Carlo sampling within a Bayesian framework facilitates statistical assessments of differences in the suitability of different habitat classes for H. mantegazzianum, and enables predictions of future spread to account for parametric uncertainty and system variability. Our results show that ignoring such covariate information may lead to biased estimates of key processes and implausible predictions of future distributions.
在本文中,我们开发了一种贝叶斯方法,用于在入侵物种在景观中扩散的随机时空模型中进行参数估计。迄今为止,诸如逻辑回归和自逻辑回归等统计技术在处理大量协变量的能力方面已经超过了随机时空模型。在这里,我们试图通过利用一系列描述景观生物地理特征的协变量来解决这个问题。相对于回归技术,随机时空模型在生物过程的表示上更加透明。它们还明确地对时间变化进行建模,因此不需要像标准统计方法那样假设物种分布(或其他空间模式)已经达到平衡。为了说明此类技术的应用,我们将其应用于分析详细描述一种入侵植物——大叶牛防风(Heracleum mantegazzianum)在20世纪在英国扩散情况的数据,使用描述当地温度、海拔和栖息地类型的地理参考协变量信息。在贝叶斯框架内使用马尔可夫链蒙特卡罗采样有助于对不同栖息地类别对大叶牛防风的适宜性差异进行统计评估,并能够预测未来扩散情况,以考虑参数不确定性和系统变异性。我们的结果表明,忽略此类协变量信息可能导致对关键过程的估计有偏差,并对未来分布做出不合理的预测。