Heckmann Anne B, Lombardo Fabien, Miwa Hiroki, Perry Jillian A, Bunnewell Sue, Parniske Martin, Wang Trevor L, Downie J Allan
Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
Plant Physiol. 2006 Dec;142(4):1739-50. doi: 10.1104/pp.106.089508. Epub 2006 Oct 27.
A new nodulation-defective mutant of Lotus japonicus does not initiate nodule cortical cell division in response to Mesorhizobium loti, but induces root hair deformation, Nod factor-induced calcium spiking, and mycorrhization. This phenotype, together with mapping data, suggested that the mutation could be in the ortholog of the Medicago truncatula NSP1 gene (MtNSP1). The sequence of the orthologous gene (LjNSP1) in the L. japonicus mutant (Ljnsp1-1) revealed a mutation causing a premature stop resulting in loss of the C-terminal 23 amino acids. We also sequenced the NSP2 gene from L. japonicus (LjNSP2). A mutant (Ljnsp2-3) with a premature stop codon was identified by TILLING showing a similar phenotype to Ljnsp1-1. Both LjNSP1 and LjNSP2 are predicted GRAS (GAI, RGA, SCR) domain transcriptional regulators. Transcript steady-state levels of LjNSP1 and LjNSP2 initially decreased and then increased following infection by M. loti. In hairy root transformations, LjNSP1 and MtNSP1 complemented both Mtnsp1-1 and Ljnsp1-1 mutants, demonstrating that these orthologous proteins have a conserved biochemical function. A Nicotiana benthamiana NSP1-like gene (NbNSP1) was shown to restore nodule formation in both Ljnsp1-1 and Mtnsp1-1 mutants, indicating that NSP1 regulators from legumes and non-legumes can propagate the Nod factor-induced signal, activating appropriate downstream targets. The L. japonicus nodules complemented with NbNSP1 contained some cells with abnormal bacteroids and could fix nitrogen. However, the NbNSP1-complemented M. truncatula nodules did not fix nitrogen and contained very few bacteria released from infection threads. These observations suggest that NSP1 is also involved in infection, bacterial release, and normal bacteroid formation in nodule cells.
百脉根的一种新的结瘤缺陷型突变体在响应百脉根根瘤菌时不会启动根瘤皮层细胞分裂,但会诱导根毛变形、结瘤因子诱导的钙信号峰值以及菌根形成。这种表型,连同定位数据,表明该突变可能存在于蒺藜苜蓿NSP1基因(MtNSP1)的直系同源基因中。百脉根突变体(Ljnsp1-1)中直系同源基因(LjNSP1)的序列显示存在一个导致提前终止的突变,导致C端23个氨基酸缺失。我们还对百脉根的NSP2基因(LjNSP2)进行了测序。通过定向诱导基因组局部突变(TILLING)鉴定出一个具有提前终止密码子的突变体(Ljnsp2-3),其表型与Ljnsp1-1相似。LjNSP1和LjNSP2均被预测为GRAS(GAI、RGA、SCR)结构域转录调节因子。LjNSP1和LjNSP2的转录本稳态水平在被百脉根根瘤菌感染后最初下降,然后上升。在毛状根转化中,LjNSP1和MtNSP1互补了Mtnsp1-1和Ljnsp1-1突变体,表明这些直系同源蛋白具有保守的生化功能。烟草的一个NSP1样基因(NbNSP1)被证明能恢复Ljnsp1-1和Mtnsp1-1突变体中的结瘤形成,表明来自豆科植物和非豆科植物的NSP1调节因子可以传递结瘤因子诱导的信号,激活适当的下游靶点。用NbNSP1互补的百脉根根瘤含有一些类菌体异常的细胞,并且能够固氮。然而,用NbNSP1互补的蒺藜苜蓿根瘤不能固氮,并且从感染丝中释放的细菌很少。这些观察结果表明,NSP1也参与根瘤细胞中的感染、细菌释放和正常类菌体形成。