Timmins Graham S, Deretic Vojo
College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
Mol Microbiol. 2006 Dec;62(5):1220-7. doi: 10.1111/j.1365-2958.2006.05467.x. Epub 2006 Oct 27.
For decades after its introduction, the mechanisms of action of the front-line antituberculosis therapeutic agent isoniazid (INH) remained unclear. Recent developments have shown that peroxidative activation of isoniazid by the mycobacterial enzyme KatG generates reactive species that form adducts with NAD(+) and NADP(+) that are potent inhibitors of lipid and nucleic acid biosynthetic enzymes. A direct role for some isoniazid-derived reactive species, such as nitric oxide, in inhibiting mycobacterial metabolic enzymes has also been shown. The concerted effects of these activities - inhibition of cell wall lipid synthesis, depletion of nucleic acid pools and metabolic depression - drive the exquisite potency and selectivity of this agent. To understand INH action and resistance fully, a synthesis of knowledge is required from multiple separate lines of research - including molecular genetic approaches, in vitro biochemical studies and free radical chemistry - which is the intent of this review.
在一线抗结核治疗药物异烟肼(INH)被引入后的几十年里,其作用机制一直不明。最近的研究进展表明,分枝杆菌酶KatG对异烟肼的过氧化激活会产生活性物质,这些活性物质与NAD(+)和NADP(+)形成加合物,而这些加合物是脂质和核酸生物合成酶的有效抑制剂。一些异烟肼衍生的活性物质,如一氧化氮,在抑制分枝杆菌代谢酶方面的直接作用也已得到证实。这些活性的协同作用——抑制细胞壁脂质合成、消耗核酸库和代谢抑制——促成了该药物卓越的效力和选择性。为了全面理解异烟肼的作用和耐药性,需要综合多条独立研究路线的知识——包括分子遗传学方法、体外生化研究和自由基化学——这正是本综述的目的。