用于多光谱滤波器阵列的基于二叉树的通用去马赛克算法。
Binary tree-based generic demosaicking algorithm for multispectral filter arrays.
作者信息
Miao Lidan, Qi Hairong, Ramanath Rajeev, Snyder Wesley E
机构信息
Department of Electrical and Computer Engineering, Advanced Imaging and Collaborative Information Processing Group, The University of Tennessee, Knoxville, TN 37996, USA.
出版信息
IEEE Trans Image Process. 2006 Nov;15(11):3550-8. doi: 10.1109/tip.2006.877476.
In this paper, we extend the idea of using mosaicked color filter array (CFA) in color imaging, which has been widely adopted in the digital color camera industry, to the use of multispectral filter array (MSFA) in multispectral imaging. The filter array technique can help reduce the cost, achieve exact registration, and improve the robustness of the imaging system. However, the extension from CFA to MSFA is not straightforward. First, most CFAs only deal with a few bands (3 or 4) within the narrow visual spectral region, while the design of MSFA needs to handle the arrangement of multiple bands (more than 3) across a much wider spectral range. Second, most existing CFA demosaicking algorithms assume the fixed Bayer CFA and are confined to properties only existed in the color domain. Therefore, they cannot be directly applied to multispectral demosaicking. The main challenges faced in multispectral demosaicking is how to design a generic algorithm that can handle the more diversified MSFA patterns, and how to improve performance with a coarser spatial resolution and a less degree of spectral correlation. In this paper, we present a binary tree based generic demosaicking method. Two metrics are used to evaluate the generic algorithm, including the root mean-square error (RMSE) for reconstruction performance and the classification accuracy for target discrimination performance. Experimental results show that the demosaicked images present low RMSE (less than 7) and comparable classification performance as original images. These results support that MSFA technique can be applied to multispectral imaging with unique advantages.
在本文中,我们将彩色成像中使用镶嵌式彩色滤光片阵列(CFA)的理念扩展到多光谱成像中使用多光谱滤光片阵列(MSFA)。彩色滤光片阵列技术已在数字彩色相机行业中广泛应用,该技术有助于降低成本、实现精确配准并提高成像系统的鲁棒性。然而,从CFA扩展到MSFA并非易事。首先,大多数CFA仅处理狭窄视觉光谱区域内的少数几个波段(3个或4个),而MSFA的设计需要处理跨越更宽光谱范围的多个波段(超过3个)的排列。其次,大多数现有的CFA去马赛克算法假定为固定的拜耳CFA,并且仅限于颜色域中存在的特性。因此,它们不能直接应用于多光谱去马赛克。多光谱去马赛克面临的主要挑战是如何设计一种通用算法来处理更多样化的MSFA模式,以及如何在空间分辨率较低和光谱相关性较小的情况下提高性能。在本文中,我们提出了一种基于二叉树的通用去马赛克方法。使用两个指标来评估通用算法,包括用于重建性能的均方根误差(RMSE)和用于目标判别性能的分类准确率。实验结果表明,去马赛克后的图像呈现出低RMSE(小于7),并且在分类性能上与原始图像相当。这些结果支持了MSFA技术可以应用于多光谱成像并具有独特优势的观点。