Suppr超能文献

基于耦合马尔可夫随机场模型的纹理图像自适应分割

Adaptive segmentation of textured images by using the coupled Markov random field model.

作者信息

Xia Yong, Feng Dagan, Zhao Rongchun

机构信息

School of Computers, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

IEEE Trans Image Process. 2006 Nov;15(11):3559-66. doi: 10.1109/tip.2006.877513.

Abstract

Although simple and efficient, traditional feature-based texture segmentation methods usually suffer from the intrinsical less inaccuracy, which is mainly caused by the oversimplified assumption that each textured subimage used to estimate a feature is homogeneous. To solve this problem, an adaptive segmentation algorithm based on the coupled Markov random field (CMRF) model is proposed in this paper. The CMRF model has two mutually dependent components: one models the observed image to estimate features, and the other models the labeling to achieve segmentation. When calculating the feature of each pixel, the homogeneity of the subimage is ensured by using only the pixels currently labeled as the same pattern. With the acquired features, the labeling is obtained through solving a maximum a posteriori problem. In our adaptive approach, the feature set and the labeling are mutually dependent on each other, and therefore are alternately optimized by using a simulated annealing scheme. With the gradual improvement of features' accuracy, the labeling is able to locate the exact boundary of each texture pattern adaptively. The proposed algorithm is compared with a simple MRF model based method in segmentation of Brodatz texture mosaics and real scene images. The satisfying experimental results demonstrate that the proposed approach can differentiate textured images more accurately.

摘要

尽管传统的基于特征的纹理分割方法简单高效,但通常存在内在的不准确性,这主要是由于过于简化的假设,即用于估计特征的每个纹理子图像都是同质的。为了解决这个问题,本文提出了一种基于耦合马尔可夫随机场(CMRF)模型的自适应分割算法。CMRF模型有两个相互依赖的组件:一个对观测图像进行建模以估计特征,另一个对标记进行建模以实现分割。在计算每个像素的特征时,仅使用当前标记为相同模式的像素来确保子图像的同质性。利用获取的特征,通过求解最大后验问题来获得标记。在我们的自适应方法中,特征集和标记相互依赖,因此使用模拟退火方案进行交替优化。随着特征准确性的逐步提高,标记能够自适应地定位每个纹理模式的精确边界。将该算法与基于简单MRF模型的方法在Brodatz纹理镶嵌图和真实场景图像的分割中进行了比较。令人满意的实验结果表明,所提出的方法能够更准确地区分纹理图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验