Kovatchev Boris P
University of Virginia Health System, Box 800137, Charlottesville, VA 22908, USA.
Curr Diab Rep. 2006 Nov;6(5):350-6. doi: 10.1007/s11892-006-0005-z.
Traditionally, statistical estimation of glycemic variability includes computing standard deviation of glucose readings or related statistics (eg, M value, mean amplitude of glucose excursions, and so forth). We advocate an alternative approach using risk measures of variability, which have substantial clinical and numerical advantages. In addition, continuous glucose monitoring (CGM) data have clinically important inherent temporal structure that should be taken into consideration. Thus, temporal variability methods are discussed for the analysis and interpretation of CGM output.
传统上,血糖变异性的统计估计包括计算血糖读数的标准差或相关统计量(如M值、血糖波动平均幅度等)。我们提倡使用变异性风险度量的替代方法,这种方法具有显著的临床和数值优势。此外,连续血糖监测(CGM)数据具有临床上重要的固有时间结构,应予以考虑。因此,本文将讨论时间变异性方法,用于分析和解读CGM输出结果。