Guevara Tibisay, Mallorquí-Fernández Noemí, García-Castellanos Raquel, García-Piqué Sonia, Ebert Petersen Gitte, Lauritzen Conni, Pedersen John, Arnau José, Gomis-Rüth F Xavier, Solà Maria
Institut de Biologia Molecular de Barcelona, C.S.I.C., c/ Jordi Girona, 18-26, E-08034 Barcelona, Spain.
Biol Chem. 2006 Oct-Nov;387(10-11):1479-86. doi: 10.1515/BC.2006.185.
Cyclisation of N-terminal glutamine and/or glutamate to yield pyroglutamate is an essential posttranslational event affecting a plethora of bioactive peptides and proteins. It is directly linked with pathologies ranging from neurodegenerative diseases to inflammation and several types of cancers. The reaction is catalysed by ubiquitous glutaminyl cyclotransferases (QCs), which present two distinct prototypes. Mammalian QCs are zinc-dependent enzymes with an alpha/beta-hydrolase fold. Here we present the 1.6-A-resolution structure of the other prototype, the plant analogue from Carica papaya (PQC). The hatbox-shaped molecule consists of an unusual five-fold beta-propeller traversed by a central channel, a topology that has hitherto been described only for some sugar-binding proteins and an extracellular nucleotidase. The high resistance of the enzyme to denaturation and proteolytic degradation is explained by its architecture, which is uniquely stabilised by a series of tethering elements that confer rigidity. Strikingly, the N-terminus of PQC specifically interacts with residues around the entrance to the central channel of a symmetry-related molecule, suggesting that this location is the putative active site. Cyclisation would follow a novel general-acid/base working mechanism, pivoting around a strictly conserved glutamate. This study provides a lead structure not only for plant QC orthologues, but also for bacteria, including potential human pathogens causing diphtheria, plague and malaria.
N端谷氨酰胺和/或谷氨酸环化生成焦谷氨酸是一种重要的翻译后事件,影响众多生物活性肽和蛋白质。它与从神经退行性疾病到炎症以及几种类型癌症的多种病理状况直接相关。该反应由普遍存在的谷氨酰胺环化酶(QC)催化,QC存在两种不同的原型。哺乳动物的QC是具有α/β-水解酶折叠的锌依赖性酶。在此,我们展示了另一种原型——番木瓜植物类似物(PQC)的1.6埃分辨率结构。帽盒状分子由一个不寻常的五重β-螺旋桨组成,中间有一个通道穿过,这种拓扑结构迄今仅在一些糖结合蛋白和一种细胞外核苷酸酶中被描述过。该酶对变性和蛋白水解降解的高抗性可由其结构来解释,其结构通过一系列赋予刚性的连接元件而独特地稳定。引人注目的是,PQC的N端与对称相关分子中央通道入口周围的残基特异性相互作用,表明该位置是假定的活性位点。环化将遵循一种围绕严格保守的谷氨酸旋转的新型酸碱工作机制。这项研究不仅为植物QC同源物,也为细菌,包括导致白喉、鼠疫和疟疾的潜在人类病原体提供了一个先导结构。