Suppr超能文献

Slow-wave activity in colon: role of network of submucosal interstitial cells of Cajal.

作者信息

Serio R, Barajas-Lopez C, Daniel E E, Berezin I, Huizinga J D

机构信息

Intestinal Diseases Research Unit, McMaster University, Hamilton, Ontario, Canada.

出版信息

Am J Physiol. 1991 Apr;260(4 Pt 1):G636-45. doi: 10.1152/ajpgi.1991.260.4.G636.

Abstract

The present study compares the electrophysiological properties of two preparations dissected from the canine colon circular muscle layer: first, containing the submucosal network of interstitial cells of Cajal (ICC) with two to four associated smooth muscle cell layers, and second, a circular muscle preparation devoid of the submucosal ICC network. In the ICC-rich preparations, consistent slow-wave activity was observed with prolonged plateau potentials of approximately 10-s duration. The plateau potentials were sensitive to D 600. In approximately 45% of circular muscle preparations devoid of the submucosal ICC network (confirmed using electron microscopy) slow waves, of different waveshape, were recorded at frequencies identical to those in whole circular muscle preparations. These slow waves did not show a plateau potential. Compared with ICC-rich preparations with a resting membrane potential of about -80 mV, circular muscle preparations had lower membrane potentials, about -70 mV when active, and about -60 mV when quiescent. Heptanol (1 mM) electrically uncoupled cells, since it abolished electrotonic current spread and allowed measurement of the input resistance by intracellular current injection. Heptanol also affected ionic conductances. Heptanol abolished slow waves; the underlying mechanism needs further investigation. In the presence of heptanol, cells in the isolated ICC network and in circular smooth muscle preparations showed spontaneous hyperpolarizing potential fluctuations at a frequency of four to six per second. These oscillations were abolished by current-induced hyperpolarization and TEA (30 mM) and are therefore likely due to spontaneously active K+ conductance.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验