Traboulsie Achraf, Chemin Jean, Chevalier Marc, Quignard Jean-François, Nargeot Joël, Lory Philippe
Département de Physiologie, Institut de Génomique Fonctionnelle (IGF), CNRS UMR 5203, INSERM U661, Universités de Montpellier I and II, 141 rue de la Cardonille, 34094 Montpellier cedex 05, France.
J Physiol. 2007 Jan 1;578(Pt 1):159-71. doi: 10.1113/jphysiol.2006.114496. Epub 2006 Nov 2.
Zinc (Zn2+) functions as a signalling molecule in the nervous system and modulates many ionic channels. In this study, we have explored the effects of Zn2+ on recombinant T-type calcium channels (CaV3.1, CaV3.2 and CaV3.3). Using tsA-201 cells, we demonstrate that CaV3.2 current (IC50, 0.8 microm) is significantly more sensitive to Zn2+ than are CaV3.1 and CaV3.3 currents (IC50, 80 microm and approximately 160 microm, respectively). This inhibition of CaV3 currents is associated with a shift to more negative membrane potentials of both steady-state inactivation for CaV3.1, CaV3.2 and CaV3.3 and steady-state activation for CaV3.1 and CaV3.3 currents. We also document changes in kinetics, especially a significant slowing of the inactivation kinetics for CaV3.1 and CaV3.3, but not for CaV3.2 currents. Notably, deactivation kinetics are significantly slowed for CaV3.3 current (approximately 100-fold), but not for CaV3.1 and CaV3.2 currents. Consequently, application of Zn2+ results in a significant increase in CaV3.3 current in action potential clamp experiments, while CaV3.1 and CaV3.2 currents are significantly reduced. In neuroblastoma NG 108-15 cells, the duration of CaV3.3-mediated action potentials is increased upon Zn2+ application, indicating further that Zn2+ behaves as a CaV3.3 channel opener. These results demonstrate that Zn2+ exhibits differential modulatory effects on T-type calcium channels, which may partly explain the complex features of Zn2+ modulation of the neuronal excitability in normal and disease states.
锌(Zn2+)在神经系统中作为信号分子发挥作用,并调节多种离子通道。在本研究中,我们探究了Zn2+对重组T型钙通道(CaV3.1、CaV3.2和CaV3.3)的影响。利用tsA-201细胞,我们证明CaV3.2电流(半数抑制浓度,IC50,0.8微摩尔)对Zn2+的敏感性显著高于CaV3.1和CaV3.3电流(IC50分别为80微摩尔和约160微摩尔)。CaV3电流的这种抑制与CaV3.1、CaV3.2和CaV3.3的稳态失活以及CaV3.1和CaV3.3电流的稳态激活向更负的膜电位偏移有关。我们还记录了动力学变化,特别是CaV3.1和CaV3.3的失活动力学显著减慢,但CaV3.2电流未出现这种情况。值得注意的是,CaV3.3电流的去激活动力学显著减慢(约100倍),但CaV3.1和CaV3.2电流未出现这种情况。因此,在动作电位钳实验中,施加Zn2+会导致CaV3.3电流显著增加,而CaV3.1和CaV3.2电流则显著降低。在神经母细胞瘤NG 108-15细胞中,施加Zn2+后CaV3.3介导的动作电位持续时间增加,进一步表明Zn2+可作为CaV3.3通道开放剂。这些结果表明,Zn2+对T型钙通道表现出不同的调节作用,这可能部分解释了Zn2+在正常和疾病状态下对神经元兴奋性调节的复杂特性。