Engineer Cawas B, Kranz Robert G
Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
Plant Physiol. 2007 Jan;143(1):236-50. doi: 10.1104/pp.106.088500. Epub 2006 Nov 3.
Nitrogen is an essential macronutrient for plant growth and survival. Here, the temporal and spatial sensing of nitrogen starvation is analyzed in Arabidopsis (Arabidopsis thaliana). The promoter for the high-affinity ammonium transporter, AtAmt1.1, is shown to be a valid indicator for nitrogen status in leaves and roots. An AtAmt1.1-Gal4 transgene using three 5x upstream activating sequence-driven reporters (luciferase, green fluorescent protein, and beta-glucuronidase) facilitated in vivo profiling at the whole-plant and cellular levels. The effects of nitrogen supply, light duration, light intensity, and carbon on the expression of the AtAmt1.1 gene in the roots and aerial tissues are reported. Under nitrogen starvation, high expression is observed in the roots and, under nitrogen-sufficient conditions, high expression is observed in the leaves. This reciprocal regulation of AtAmt1.1 was confirmed by quantitative reverse transcription-polymerase chain reaction, which was also used to quantitate expression of the five other Amt genes in Arabidopsis. Although some of these show tissue specificity (roots or leaves), none exhibit reciprocal regulation like the AtAmt1.1-encoded high-affinity transporter. This robust reciprocal expression suggests that Arabidopsis undergoes rapid resource reallocation in plants grown under different nitrogen supply regimens. Ultimately, nitrogen starvation-mediated reallocation results in root architectural restructuring. We describe the precise timing and cellular aspects of this nitrogen limitation response.
氮是植物生长和存活所必需的大量营养素。在此,对拟南芥中氮饥饿的时空感知进行了分析。高亲和力铵转运蛋白AtAmt1.1的启动子被证明是叶片和根系中氮状态的有效指标。一个使用三个5x上游激活序列驱动报告基因(荧光素酶、绿色荧光蛋白和β-葡萄糖醛酸酶)的AtAmt1.1-Gal4转基因有助于在全株和细胞水平上进行体内分析。报告了氮供应、光照时长、光照强度和碳对AtAmt1.1基因在根系和地上组织中表达的影响。在氮饥饿条件下,根系中观察到高表达,而在氮充足条件下,叶片中观察到高表达。AtAmt1.1的这种相互调节通过定量逆转录-聚合酶链反应得到证实,该反应也用于定量拟南芥中其他五个Amt基因的表达。尽管其中一些基因表现出组织特异性(根系或叶片),但没有一个像AtAmt1.1编码的高亲和力转运蛋白那样表现出相互调节。这种强烈的相互表达表明,拟南芥在不同氮供应方案下生长的植物中经历了快速的资源重新分配。最终,氮饥饿介导的重新分配导致根系结构重组。我们描述了这种氮限制反应的精确时间和细胞层面。