Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer W B, von Wirén N
Pflanzenphysiologie, Zentrum für Molekularbiologie der Pflanzen (ZMBP), Universität Tübingen, Morgenstelle 1, D-72076 Tübingen, Germany.
Plant Cell. 1999 May;11(5):937-48. doi: 10.1105/tpc.11.5.937.
Ammonium and nitrate are the prevalent nitrogen sources for growth and development of higher plants. 15N-uptake studies demonstrated that ammonium is preferred up to 20-fold over nitrate by Arabidopsis plants. To study the regulation and complex kinetics of ammonium uptake, we isolated two new ammonium transporter (AMT) genes and showed that they functionally complemented an ammonium uptake-deficient yeast mutant. Uptake studies with 14C-methylammonium and inhibition by ammonium yielded distinct substrate affinities between </=0.5 and 40 microM. Correlation of gene expression with 15NH4+ uptake into plant roots showed that nitrogen supply and time of day differentially regulated the individual carriers. Transcript levels of AtAMT1;1, which possesses an affinity in the nanomolar range, steeply increased with ammonium uptake in roots when nitrogen nutrition became limiting, whereas those of AtAMT1;3 increased slightly, with AtAMT1;2 being more constitutively expressed. All three ammonium transporters showed diurnal variation in expression, but AtAMT1;3 transcript levels peaked with ammonium uptake at the end of the light period, suggesting that AtAMT1;3 provides a link between nitrogen assimilation and carbon provision in roots. Our results show that high-affinity ammonium uptake in roots is regulated in relation to the physiological status of the plant at the transcriptional level and by substrate affinities of individual members of the AMT1 gene family.
铵和硝酸盐是高等植物生长发育过程中普遍存在的氮源。15N吸收研究表明,拟南芥植株对铵的偏好程度比硝酸盐高20倍。为了研究铵吸收的调控和复杂动力学,我们分离出两个新的铵转运蛋白(AMT)基因,并证明它们在功能上互补了一个铵吸收缺陷型酵母突变体。用14C-甲基铵进行的吸收研究以及铵的抑制作用在≤0.5和40微摩尔之间产生了明显不同的底物亲和力。基因表达与15NH4+吸收到植物根中的相关性表明,氮供应和一天中的时间对各个载体有不同的调控作用。AtAMT1;1的转录水平在纳摩尔范围内具有亲和力,当氮营养变得有限时,其在根中的铵吸收量会急剧增加;而AtAMT1;3的转录水平略有增加,AtAMT1;2的表达则更具组成性。所有这三种铵转运蛋白的表达都呈现出昼夜变化,但AtAMT1;3的转录水平在光照期结束时随着铵的吸收达到峰值,这表明AtAMT1;3在根中氮同化和碳供应之间建立了联系。我们的结果表明,根中高亲和力铵的吸收在转录水平上与植物的生理状态以及AMT1基因家族各个成员的底物亲和力有关。