Barney Brett M, Lukoyanov Dmitriy, Yang Tran-Chin, Dean Dennis R, Hoffman Brian M, Seefeldt Lance C
Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA.
Proc Natl Acad Sci U S A. 2006 Nov 14;103(46):17113-8. doi: 10.1073/pnas.0602130103. Epub 2006 Nov 6.
Methyldiazene (HN=N-CH3) isotopomers labeled with 15N at the terminal or internal nitrogens or with 13C or 2H were used as substrates for the nitrogenase alpha-195Gln-substituted MoFe protein. Freeze quenching under turnover traps an S = (1/2) state that has been characterized by EPR and 1H-, 15N-, and 13C-electron nuclear double resonance spectroscopies. These studies disclosed the following: (i) a methyldiazene-derived species is bound to the active-site FeMo cofactor; (ii) this species binds through an [-NHx] fragment whose N derives from the methyldiazene terminal N; and (iii) the internal N from methyldiazene probably does not bind to FeMo cofactor. These results constrain possible mechanisms for reduction of methyldiazene. In the Chatt-Schrock mechanism for N2 reduction, H atoms sequentially add to the distal N before N-N bond cleavage (d-mechanism). In a d-mechanism for methyldiazene reduction, a bound [-NHx] fragment only occurs after reduction by three electrons, which leads to N-N bond cleavage and the release of the first NH3. Thus, the appearance of bound [-NHx] is compatible with the d-mechanism only if it represents a late stage in the reduction process. In contrast are mechanisms where H atoms add alternately to distal and proximal nitrogens before N-N cleavage (a-mechanism) and release of the first NH3 after reduction by five electrons. An [-NHx] fragment would be bound at every stage of methyldiazene reduction in an a-mechanism. Although current information does not rule out the d-mechanism, the a-mechanism is more attractive because proton delivery to substrate has been specifically compromised in alpha-195Gln-substituted MoFe protein.
以在末端或内部氮原子上标记有(^{15}N)、或标记有(^{13}C)或(^{2}H)的甲基重氮烯((HN=N-CH_3))同位素异构体作为固氮酶α-195谷氨酰胺取代的钼铁蛋白的底物。在周转过程中进行冷冻猝灭捕获到一个(S=(1/2))态,该态已通过电子顺磁共振以及(^1H -)、(^{15}N -)和(^{13}C -)电子核双共振光谱进行了表征。这些研究揭示了以下内容:(i)一种源自甲基重氮烯的物种与活性位点的铁钼辅因子结合;(ii)该物种通过一个([-NH_x])片段结合,其氮原子源自甲基重氮烯的末端氮;(iii)甲基重氮烯的内部氮可能不与铁钼辅因子结合。这些结果限制了甲基重氮烯还原的可能机制。在用于(N_2)还原的查特 - 施罗克机制中,氢原子在(N - N)键断裂之前依次添加到远端氮上(d机制)。在甲基重氮烯还原的d机制中,一个结合的([-NH_x])片段仅在通过三个电子还原后出现,这导致(N - N)键断裂并释放出第一个(NH_3)。因此,只有当结合的([-NH_x])代表还原过程的后期阶段时,其出现才与d机制兼容。相比之下,还有一些机制,其中氢原子在(N - N)裂解之前交替添加到远端和近端氮上(a机制),并在通过五个电子还原后释放出第一个(NH_3)。在a机制中,一个([-NH_x])片段将在甲基重氮烯还原的每个阶段都结合。虽然目前的信息不排除d机制,但a机制更具吸引力,因为在α-195谷氨酰胺取代的钼铁蛋白中质子传递到底物的过程已受到特异性损害。