Suppr超能文献

氧化锌纳米螺旋的超弹性与纳米断裂力学

Superelasticity and nanofracture mechanics of ZnO nanohelices.

作者信息

Gao Pu Xian, Mai Wenjie, Wang Zhong Lin

机构信息

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, USA.

出版信息

Nano Lett. 2006 Nov;6(11):2536-43. doi: 10.1021/nl061943i.

Abstract

A superelasticity (shape memory) behavior has been discovered for the superlattice-structured ZnO nanohelices. By in situ manipulation using a nanoprobe, the nanohelix could elastically recover its shape after an extremely large axial stretching to a degree close to the theoretical limit, while suffering little residual plastic deformation. As a result, its spring constant can be increased continuously for up to 300-800%. A shape memory/recovery of the nanohelix was observed after subjecting to a buckling deformation. The superelastic deformation and fracture process of a nanohelix have been studied by transversely compressing under an AFM tip. A two-step mechanism is suggested for explaining the measured force-displacement curve. It is suggested that the small thickness and the superlattice structure of the nanohelix might be the keys for the observed superelasticity. The ZnO nanohelices may be a new category of shape-memory ceramic nanostructures, which could be of great interest for investigating nanoscale fracture process and application in MEMS and NEMS. The elastic recovery of the nanohelix after extremely large deformation makes it a potential structure for nanoscale elastic energy storage.

摘要

人们发现超晶格结构的ZnO纳米螺旋具有超弹性(形状记忆)行为。通过使用纳米探针进行原位操作,纳米螺旋在轴向被极大拉伸至接近理论极限的程度后,仍能弹性恢复其形状,且几乎没有残余塑性变形。结果,其弹簧常数可连续增加高达300 - 800%。在纳米螺旋发生屈曲变形后,观察到了形状记忆/恢复现象。通过在原子力显微镜(AFM)针尖下进行横向压缩,研究了纳米螺旋的超弹性变形和断裂过程。提出了一种两步机制来解释所测得的力-位移曲线。有人认为,纳米螺旋的小厚度和超晶格结构可能是观察到超弹性的关键因素。ZnO纳米螺旋可能是一类新型的形状记忆陶瓷纳米结构,这对于研究纳米尺度的断裂过程以及在微机电系统(MEMS)和纳机电系统(NEMS)中的应用可能具有极大的意义。纳米螺旋在极大变形后的弹性恢复使其成为纳米尺度弹性能量存储的潜在结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验