Suppr超能文献

原子物理学对电渗流的影响:基于密度泛函理论的分析。

Influence of atomistic physics on electro-osmotic flow: an analysis based on density functional theory.

作者信息

Nilson Robert H, Griffiths Stewart K

机构信息

Physical and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551-0969, USA.

出版信息

J Chem Phys. 2006 Oct 28;125(16):164510. doi: 10.1063/1.2358684.

Abstract

Molecular density profiles and charge distributions determined by density functional theory (DFT) are used in conjunction with the continuum Navier-Stokes equations to compute electro-osmotic flows in nanoscale channels. The ion species of the electrolyte are represented as centrally charged hard spheres, and the solvent is treated as a dense fluid of neutral hard spheres having a uniform dielectric constant. The model explicitly accounts for Lennard-Jones interactions among fluid and wall molecules, hard sphere repulsions, and short range electrical interactions, as well as long range Coulombic interactions. Only the last of these interactions is included in classical Poisson-Boltzmann (PB) modeling of the electric field. Although the proposed DFT approach is quite general, the sample calculations presented here are limited to symmetric monovalent electrolytes. For a prescribed surface charge, this DFT model predicts larger counterion concentrations near charged channel walls, relative to classical PB modeling, and hence smaller concentrations in the channel center. This shifting of counterions toward the walls reduces the effective thickness of the Debye layer and reduces electro-osmotic velocities as compared to classical PB modeling. Zeta potentials and fluid speeds computed by the DFT model are as much as two or three times smaller than corresponding PB results. This disparity generally increases with increasing electrolyte concentration, increasing surface charge density and decreasing channel width. The DFT results are found to be comparable to those obtained by molecular dynamics simulation, but require considerably less computing time.

摘要

由密度泛函理论(DFT)确定的分子密度分布和电荷分布与连续介质纳维-斯托克斯方程结合使用,以计算纳米级通道中的电渗流。电解质的离子种类表示为中心带电的硬球,溶剂被视为具有均匀介电常数的中性硬球的致密流体。该模型明确考虑了流体与壁分子之间的 Lennard-Jones 相互作用、硬球排斥以及短程电相互作用,还有长程库仑相互作用。在经典的电场泊松-玻尔兹曼(PB)模型中仅包含这些相互作用中的最后一种。尽管所提出的 DFT 方法相当通用,但此处给出的示例计算仅限于对称单价电解质。对于规定的表面电荷,相对于经典 PB 模型,该 DFT 模型预测带电通道壁附近的反离子浓度更高,因此通道中心的浓度更低。与经典 PB 模型相比,反离子向壁的这种移动减小了德拜层的有效厚度并降低了电渗速度。DFT 模型计算的zeta电位和流体速度比相应的 PB 结果小两到三倍。这种差异通常随着电解质浓度的增加、表面电荷密度的增加和通道宽度的减小而增大。发现 DFT 结果与分子动力学模拟获得的结果相当,但所需的计算时间要少得多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验