Borgwardt Karsten M, Vishwanathan S V N, Kriegel Hans-Peter
Institute for Computer Science, Ludwig-Maximilians-University of Munich, Oettingenstr. 67, 80538 Munich, Germany.
Pac Symp Biocomput. 2006:547-58.
We present a kernel-based approach to the classification of time series of gene expression profiles. Our method takes into account the dynamic evolution over time as well as the temporal characteristics of the data. More specifically, we model the evolution of the gene expression profiles as a Linear Time Invariant (LTI) dynamical system and estimate its model parameters. A kernel on dynamical systems is then used to classify these time series. We successfully test our approach on a published dataset to predict response to drug therapy in Multiple Sclerosis patients. For pharmacogenomics, our method offers a huge potential for advanced computational tools in disease diagnosis, and disease and drug therapy outcome prognosis.
我们提出了一种基于核的方法来对基因表达谱的时间序列进行分类。我们的方法考虑了随时间的动态演变以及数据的时间特征。更具体地说,我们将基因表达谱的演变建模为线性时不变(LTI)动力系统,并估计其模型参数。然后使用动力系统上的核来对这些时间序列进行分类。我们在一个已发表的数据集上成功测试了我们的方法,以预测多发性硬化症患者对药物治疗的反应。对于药物基因组学,我们的方法为疾病诊断以及疾病和药物治疗结果预后方面的先进计算工具提供了巨大潜力。