Chu Haitao, Cole Stephen R
Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
Biom J. 2006 Aug;48(5):772-9. doi: 10.1002/bimj.200510267.
The novel two-step serologic sensitive/less sensitive testing algorithm for detecting recent HIV seroconversion (STARHS) provides a simple and practical method to estimate HIV-1 incidence using cross-sectional HIV seroprevalence data. STARHS has been used increasingly in epidemiologic studies. However, the uncertainty of incidence estimates using this algorithm has not been well described, especially for high risk groups or when missing data is present because a fraction of sensitive enzyme immunoassay (EIA) positive specimens are not tested by the less sensitive EIA. Ad hoc methods used in practice provide incorrect confidence limits and thus may jeopardize statistical inference. In this report, we propose maximum likelihood and Bayesian methods for correctly estimating the uncertainty in incidence estimates obtained using prevalence data with a fraction missing, and extend the methods to regression settings. Using a study of injection drug users participating in a drug detoxification program in New York city as an example, we demonstrated the impact of underestimating the uncertainty in incidence estimates using ad hoc methods. Our methods can be applied to estimate the incidence of other diseases from prevalence data using similar testing algorithms when missing data is present.
用于检测近期HIV血清转化的新型两步血清学敏感/低敏感检测算法(STARHS)提供了一种简单实用的方法,可利用横断面HIV血清流行率数据估算HIV-1发病率。STARHS在流行病学研究中的应用越来越广泛。然而,使用该算法估算发病率的不确定性尚未得到很好的描述,特别是对于高危人群或存在缺失数据的情况,因为一部分敏感酶免疫测定(EIA)阳性标本未通过低敏感EIA检测。实际中使用的临时方法会提供错误的置信区间,从而可能危及统计推断。在本报告中,我们提出了最大似然法和贝叶斯方法,用于正确估算使用存在部分缺失的流行率数据获得的发病率估算中的不确定性,并将这些方法扩展到回归设置。以纽约市一项参与戒毒项目的注射吸毒者研究为例,我们展示了使用临时方法低估发病率估算不确定性的影响。当存在缺失数据时,我们的方法可应用于使用类似检测算法从流行率数据估算其他疾病的发病率。