Lehnert-Batar Andrea, Pfahlberg Annette, Gefeller Olaf
Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-University Erlangen-Nuremberg, Waldstrasse 6, 91054 Erlangen, Germany.
Biom J. 2006 Aug;48(5):805-19. doi: 10.1002/bimj.200510215.
The epidemiologic concept of the adjusted attributable risk is a useful approach to quantitatively describe the importance of risk factors on the population level. It measures the proportional reduction in disease probability when a risk factor is eliminated from the population, accounting for effects of confounding and effect-modification by nuisance variables. The computation of asymptotic variance estimates for estimates of the adjusted attributable risk is often done by applying the delta method. Investigations on the delta method have shown, however, that the delta method generally tends to underestimate the standard error, leading to biased confidence intervals. We compare confidence intervals for the adjusted attributable risk derived by applying computer intensive methods like the bootstrap or jackknife to confidence intervals based on asymptotic variance estimates using an extensive Monte Carlo simulation and within a real data example from a cohort study in cardiovascular disease epidemiology. Our results show that confidence intervals based on bootstrap and jackknife methods outperform intervals based on asymptotic theory. Best variants of computer intensive confidence intervals are indicated for different situations.
调整归因风险的流行病学概念是一种在人群层面定量描述风险因素重要性的有用方法。它衡量当从人群中消除一个风险因素时疾病概率的成比例降低,同时考虑混杂因素的影响以及干扰变量的效应修正。调整归因风险估计值的渐近方差估计通常通过应用德尔塔方法来计算。然而,对德尔塔方法的研究表明,德尔塔方法通常倾向于低估标准误差,从而导致置信区间有偏差。我们通过广泛的蒙特卡罗模拟以及在心血管疾病流行病学队列研究的一个实际数据示例中,将应用诸如自助法或刀切法等计算机密集型方法得出的调整归因风险的置信区间与基于渐近方差估计的置信区间进行比较。我们的结果表明,基于自助法和刀切法的置信区间优于基于渐近理论的区间。针对不同情况指出了计算机密集型置信区间的最佳变体。