Puccini Gabriel D, Sanchez-Vives Maria V, Compte Albert
Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 Sant Joan d'Alacant, Spain.
J Physiol Paris. 2006 Jul-Sep;100(1-3):1-15. doi: 10.1016/j.jphysparis.2006.09.005. Epub 2006 Nov 13.
Short-term synaptic depression (STD) and spike-frequency adaptation (SFA) are two basic physiological cortical mechanisms for reducing the system's excitability under repetitive stimulation. The computational implications of each one of these mechanisms on information processing have been studied in detail, but not so the dynamics arising from their combination in a realistic biological scenario. We show here, both experimentally with intracellular recordings from cortical slices of the ferret and computationally using a biologically realistic model of a feedforward cortical network, that STD combined with presynaptic SFA results in the resensitization of cortical synaptic efficacies in the course of sustained stimulation. This fundamental effect is then shown in the computational model to have important implications for the network response to time-varying inputs. The main findings are: (1) the addition of SFA to the model endowed with STD improves the network sensitivity to the degree of synchrony in the incoming inputs; (2) presynaptic SFA, whether slow or fast, combined with STD results in postsynaptic neurons responding briskly to abrupt changes in the presynaptic input current and ignoring sustained stimulation, much more effectively than either SFA or STD alone; (3) for slow presynaptic SFA postsynaptic responses to strong inputs decrease inversely to the input, whereas for weak input current to presynaptic neurons transient postsynaptic responses are strongly facilitated, thus enhancing the system's sensitivity for subtle changes in weak presynaptic inputs. Taken together, these results suggest that in systems designed to respond to temporal aspects of the input, SFA and STD might constitute two necessary, linked elements whose simultaneous interplay is important for the performance of the system.
短期突触抑制(STD)和放电频率适应(SFA)是两种基本的生理皮层机制,用于在重复刺激下降低系统的兴奋性。这些机制中的每一种对信息处理的计算影响都已得到详细研究,但它们在现实生物学场景中结合所产生的动态变化却未得到充分研究。我们在此展示,通过雪貂皮层切片的细胞内记录实验以及使用前馈皮层网络的生物学现实模型进行计算,STD与突触前SFA相结合会在持续刺激过程中导致皮层突触效能的重新敏感化。然后在计算模型中表明,这一基本效应对于网络对时变输入的响应具有重要意义。主要发现如下:(1)在具有STD的模型中加入SFA可提高网络对传入输入同步程度的敏感性;(2)突触前SFA,无论快慢,与STD相结合会使突触后神经元对突触前输入电流的突然变化迅速做出反应,而忽略持续刺激,这比单独的SFA或STD都要有效得多;(3)对于缓慢的突触前SFA,突触后对强输入的反应与输入成反比降低,而对于突触前神经元的弱输入电流,突触后瞬态反应会得到强烈促进,从而增强系统对突触前弱输入细微变化的敏感性。综上所述,这些结果表明,在旨在对输入的时间方面做出响应的系统中,SFA和STD可能构成两个必要的、相互关联的要素,它们的同时相互作用对于系统的性能很重要。