Mongillo Gianluigi, Curti Emanuele, Romani Sandro, Amit Daniel J
Dipartimento di Fisiologia Umana and Dottorato di ricerca in Neurofisiologia, Universita' di Roma La Sapienza, Rome, Italy.
Eur J Neurosci. 2005 Jun;21(11):3143-60. doi: 10.1111/j.1460-9568.2005.04087.x.
We have used simulations to study the learning dynamics of an autonomous, biologically realistic recurrent network of spiking neurons connected via plastic synapses, subjected to a stream of stimulus-delay trials, in which one of a set of stimuli is presented followed by a delay. Long-term plasticity, produced by the neural activity experienced during training, structures the network and endows it with active (working) memory, i.e. enhanced, selective delay activity for every stimulus in the training set. Short-term plasticity produces transient synaptic depression. Each stimulus used in training excites a selective subset of neurons in the network, and stimuli can share neurons (overlapping stimuli). Long-term plasticity dynamics are driven by presynaptic spikes and coincident postsynaptic depolarization; stability is ensured by a refresh mechanism. In the absence of stimulation, the acquired synaptic structure persists for a very long time. The dependence of long-term plasticity dynamics on the characteristics of the stimulus response (average emission rates, time course and synchronization), and on the single-cell emission statistics (coefficient of variation) is studied. The study clarifies the specific roles of short-term synaptic depression, NMDA receptors, stimulus representation overlaps, selective stimulation of inhibition, and spike asynchrony during stimulation. Patterns of network spiking activity before, during and after training reproduce most of the in vivo physiological observations in the literature.
我们利用模拟研究了一个通过可塑性突触连接的自主、具有生物真实性的脉冲神经元循环网络的学习动态,该网络接受一系列刺激-延迟试验,其中呈现一组刺激中的一个,随后是延迟。训练期间神经活动产生的长期可塑性塑造了网络,并赋予其主动(工作)记忆,即对训练集中的每个刺激增强的、选择性的延迟活动。短期可塑性产生短暂的突触抑制。训练中使用的每个刺激都会激发网络中神经元的一个选择性子集,并且刺激可以共享神经元(重叠刺激)。长期可塑性动态由突触前脉冲和同步的突触后去极化驱动;通过刷新机制确保稳定性。在没有刺激的情况下,获得的突触结构会持续很长时间。研究了长期可塑性动态对刺激反应特征(平均发放率、时间进程和同步性)以及单细胞发放统计(变异系数)的依赖性。该研究阐明了短期突触抑制、NMDA受体、刺激表征重叠、选择性抑制刺激以及刺激期间脉冲异步的具体作用。训练前、训练期间和训练后的网络脉冲活动模式重现了文献中大多数体内生理学观察结果。