Duplomb Laurence, Dagouassat Maylis, Jourdon Philippe, Heymann Dominique
INSERM, ERI 7 Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, EA3822, 1 rue Gaston Veil, 44035 Nantes Cedex 1.
Stem Cells. 2007 Mar;25(3):544-52. doi: 10.1634/stemcells.2006-0395. Epub 2006 Nov 9.
Bone remodeling involves synthesis of organic matrix by osteoblasts and bone resorption by osteoclasts. A tight collaboration between these two cell types is essential to maintain a physiological bone homeostasis. Thus, osteoblasts control bone-resorbing activities and are also involved in osteoclast differentiation. Any disturbance between these effectors leads to the development of skeletal abnormalities and/or bone diseases. In this context, the determination of key genes involved in bone cell differentiation is a new challenge to treat any skeletal disorders. Different models are used to study the differentiation process of these cells, but all of them use pre-engaged progenitor cells, allowing us to study only the latest stages of the differentiation. Embryonic stem (ES) cells come from the inner mass of the blastocyst prior its implantation to the uterine wall. Because of their capacity to differentiate into all germ layers, and so into all tissues of the body, ES cells represent the best model by which to study earliest stages of bone cell differentiation. Osteoblasts are generated by two methods, one including the generation of embryoid body, the other not. Mineralizing cells are obtained after 2 weeks of culture and express all the specific osteoblastic markers (alkaline phosphatase, type I collagen, osteocalcin, and others). Osteoclasts are generated from a single-cell suspension of ES cells seeded on a feeder monolayer, and bone-resorbing cells expressing osteoclastic markers such as tartrate-resistant alkaline phosphatase or receptor activator of nuclear factor kappaB are obtained within 11 days. The aim of this review is to present recent discoveries and advances in the differentiation of both osteoblasts and osteoclasts from ES cells.
骨重塑涉及成骨细胞合成有机基质以及破骨细胞进行骨吸收。这两种细胞类型之间的紧密协作对于维持生理性骨稳态至关重要。因此,成骨细胞控制骨吸收活动,并且也参与破骨细胞的分化。这些效应器之间的任何干扰都会导致骨骼异常和/或骨疾病的发生。在这种背景下,确定参与骨细胞分化的关键基因是治疗任何骨骼疾病的一项新挑战。人们使用不同的模型来研究这些细胞的分化过程,但所有模型都使用预先参与的祖细胞,这使我们只能研究分化的最后阶段。胚胎干细胞(ES细胞)来自胚泡在植入子宫壁之前的内细胞团。由于其能够分化为所有胚层,进而分化为身体的所有组织,ES细胞是研究骨细胞分化最早阶段的最佳模型。成骨细胞通过两种方法产生,一种包括生成胚状体,另一种则不包括。培养2周后可获得矿化细胞,这些细胞表达所有特定的成骨细胞标志物(碱性磷酸酶、I型胶原蛋白、骨钙素等)。破骨细胞由接种在饲养单层上的ES细胞单细胞悬液产生,在11天内可获得表达破骨细胞标志物如抗酒石酸碱性磷酸酶或核因子κB受体激活剂的骨吸收细胞。本综述的目的是介绍从ES细胞分化成骨细胞和破骨细胞方面的最新发现和进展。