Suppr超能文献

采用逆有限元法测量人体桡骨的表观杨氏模量

Apparent Young's modulus of human radius using inverse finite-element method.

作者信息

Bosisio M R, Talmant M, Skalli W, Laugier P, Mitton D

机构信息

Laboratoire de Biomécanique, ENSAM-CNRS, Paris, France.

出版信息

J Biomech. 2007;40(9):2022-8. doi: 10.1016/j.jbiomech.2006.09.018. Epub 2006 Nov 13.

Abstract

The ability to assess the elastic and failure properties of cortical bone at the radial diaphysis has a clinical importance. A new generation of quantitative ultrasound (QUS) devices and peripheral quantitative computed tomography (p-QCT) has been developed to assess non-invasively bone material and structural properties at the distal radius. This anatomical site is characterized by a thin cortical thickness that complicates traditional mechanical testing methods on specimens. Until now, mechanical properties of cortical bone at distal radius (e.g., elastic modulus, yield stress and strain) remain rarely studied probably due to experimental difficulties. The present study introduces an inverse finite-element method strategy to measure the elastic modulus and yield properties of human cortical specimens of the radial diaphysis. Twenty millimeter-thick portions of diaphysis were cut from 40 human radii (ages 45-90) for biomechanical test. Subsequently the same portion was modeled in order to obtain a specimen-specific three dimensional finite-element model (3D-FEM). Longitudinal elastic constants at the apparent level and stress characterizations were performed by coupling mechanical parameters with isotropic linear-elastic simulations. The results indicated that the mean apparent Young's modulus for radial cortical bone was 16 GPa (SD 1.8) and the yield stress was 153 MPa (SD 33). Breaking load was 12,946 N (SD 3644), cortical thickness 2.9 mm (SD 0.6), structural effective strain at the yield (epsilon(y)=0.0097) and failure (epsilon(u)=0.0154) load were also calculated. The 3D-FEM strategy described here may help to investigate bone mechanical properties when some difficulties arise from machining mechanical sample.

摘要

评估桡骨干皮质骨的弹性和破坏特性具有临床重要性。新一代定量超声(QUS)设备和外周定量计算机断层扫描(p-QCT)已被开发出来,用于非侵入性评估桡骨远端的骨材料和结构特性。这个解剖部位的特点是皮质厚度较薄,这使得对标本进行传统力学测试方法变得复杂。到目前为止,桡骨远端皮质骨的力学性能(如弹性模量、屈服应力和应变)可能由于实验困难而很少被研究。本研究引入了一种逆向有限元方法策略,以测量桡骨干皮质骨人类标本的弹性模量和屈服特性。从40根人类桡骨(年龄45 - 90岁)上切下20毫米厚的骨干部分用于生物力学测试。随后对同一部分进行建模,以获得特定标本的三维有限元模型(3D-FEM)。通过将力学参数与各向同性线弹性模拟相结合,进行表观水平的纵向弹性常数和应力表征。结果表明,桡骨皮质骨的平均表观杨氏模量为16 GPa(标准差1.8),屈服应力为153 MPa(标准差33)。破坏载荷为12946 N(标准差3644),皮质厚度为2.9 mm(标准差0.6),还计算了屈服(ε(y)=0.0097)和破坏(ε(u)=0.0154)载荷时的结构有效应变。当机械样本加工出现一些困难时,这里描述的3D-FEM策略可能有助于研究骨力学性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验