Suppr超能文献

Nanoscience of single polymer chains revealed by nanofishing.

作者信息

Nakajima Ken, Nishi Toshio

机构信息

Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan.

出版信息

Chem Rec. 2006;6(5):249-58. doi: 10.1002/tcr.20092.

Abstract

The invention of atomic force microscopy (AFM) enabled us to study the statistical properties of single polymer chains by a method called "nanofishing," which stretches a single polymer chain adsorbed on a substrate with its one end by picking it at the other end. A force-extension curve obtained for a single polystyrene chain in a Theta solvent (cyclohexane) shows good agreement with a worm-like chain model and, therefore, gives microscopic information about entropic elasticity. Furthermore, the nanofishing technique can be used for dynamic viscoelastic measurement of single polymer chains. An AFM cantilever is mechanically oscillated at its resonant frequency during the stretching process. This technique enables the estimation of quantitative and simultaneous elongation-dependent changes of stiffness and viscosity of a single chain with the use of a phenomenological model. In this study, the effect of solvent on viscosity in low extension regions reveals that the viscosity is attributed to monomer-solvent friction. Thus, static and dynamic nanofishing techniques are shown to give powerful experimental proofs for several basic questions in polymer physics. The techniques are expected to reveal hidden properties of polymer chains or polymer solutions by any types of macroscopic measurements in the future.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验