Suppr超能文献

四种常见绿色荧光染料内化进入癌细胞后的发射效率比较。

A comparison of the emission efficiency of four common green fluorescence dyes after internalization into cancer cells.

作者信息

Hama Yukihiro, Urano Yasuteru, Koyama Yoshinori, Bernardo Marcelino, Choyke Peter L, Kobayashi Hisataka

机构信息

Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1088, USA.

出版信息

Bioconjug Chem. 2006 Nov-Dec;17(6):1426-31. doi: 10.1021/bc0601626.

Abstract

In vivo optical imaging to enhance the detection of cancer during endoscopy or surgery requires a targeted fluorescent probe with high emission efficiency and high signal-to-background ratio. One strategy to accurately detect cancers is to have the fluorophore internalize within the cancer cells permitting nonbound fluorophores to be washed away or absorbed. The choice of fluorophores for this task must be carefully considered. For depth of penetration, near-infrared probes are ordinarily preferred but suffer from relatively low quantum efficiency. Although green fluorescent protein has been widely used to image tumors on internal organs in mice, green fluorescent probes are better suited for imaging the superficial tissues because of the short penetration distance of green light in tissue and the highly efficient production of signal. While the fluorescence properties of green fluorophores are well-known in vitro, less attention has been paid to their fluorescence once they are internalized within cells. In this study, the emission efficiency after cellular internalization of four common green fluorophores conjugated to avidin (Av-fluorescein, Av-Oregon green, Av-BODIPY-FL, and Av-rhodamine green) were compared after each conjugate was incubated with SHIN3 ovarian cancer cells. Using the lectin binding receptor system, the avidin-fluorophore conjugates were endocytosed, and their fluorescence was evaluated with fluorescence microscopy and flow cytometry. While fluorescein demonstrated the highest signal outside the cell, among the four fluorophores, internalized Av-rhodamine green emitted the most light from SHIN3 ovarian cancer cells both in vitro and in vivo. The internalized Av-rhodamine green complex appeared to localize to the endoplasmic vesicles. Thus, among the four common green fluorescent dyes, rhodamine green is the brightest green fluorescence probe after cellular internalization. This information could have implications for the design of tumor-targeted fluorescent probes that rely on cellular internalization for cancer detection.

摘要

在内窥镜检查或手术期间通过体内光学成像增强癌症检测需要一种具有高发射效率和高信噪比的靶向荧光探针。准确检测癌症的一种策略是使荧光团内化于癌细胞内,从而洗去或吸收未结合的荧光团。必须仔细考虑用于此任务的荧光团的选择。就穿透深度而言,通常首选近红外探针,但它们的量子效率相对较低。尽管绿色荧光蛋白已被广泛用于对小鼠体内器官的肿瘤进行成像,但由于绿光在组织中的穿透距离短且信号产生高效,绿色荧光探针更适合对浅表组织进行成像。虽然绿色荧光团的荧光特性在体外是众所周知的,但对于它们内化于细胞后的荧光关注较少。在本研究中,将四种与抗生物素蛋白偶联的常见绿色荧光团(抗生物素蛋白 - 荧光素、抗生物素蛋白 - 俄勒冈绿、抗生物素蛋白 - BODIPY - FL和抗生物素蛋白 - 罗丹明绿)与SHIN3卵巢癌细胞孵育后,比较了它们在细胞内化后的发射效率。利用凝集素结合受体系统,使抗生物素蛋白 - 荧光团偶联物被内吞,并通过荧光显微镜和流式细胞术评估它们的荧光。虽然荧光素在细胞外显示出最高信号,但在这四种荧光团中,内化的抗生物素蛋白 - 罗丹明绿在体外和体内的SHIN3卵巢癌细胞中发出的光最多。内化的抗生物素蛋白 - 罗丹明绿复合物似乎定位于内质小泡。因此,在这四种常见的绿色荧光染料中,罗丹明绿是细胞内化后最亮的绿色荧光探针。这一信息可能对依赖细胞内化进行癌症检测的肿瘤靶向荧光探针的设计具有启示意义。

相似文献

7
Determination of optimal rhodamine fluorophore for in vivo optical imaging.
Bioconjug Chem. 2008 Aug;19(8):1735-42. doi: 10.1021/bc800140c. Epub 2008 Jul 9.
10
Targeted optical fluorescence imaging of human ovarian adenocarcinoma using a galactosyl serum albumin-conjugated fluorophore.
Cancer Sci. 2007 Nov;98(11):1727-33. doi: 10.1111/j.1349-7006.2007.00602.x. Epub 2007 Sep 2.

引用本文的文献

1
Combining nitric oxide and calcium sensing for the detection of endothelial dysfunction.
Commun Chem. 2023 Aug 29;6(1):179. doi: 10.1038/s42004-023-00973-8.
3
The Use of Upconversion Nanoparticles in Prostate Cancer Photodynamic Therapy.
Life (Basel). 2021 Apr 19;11(4):360. doi: 10.3390/life11040360.
4
Structurally Characterized BODIPY-Appended Oxidovanadium(IV) β-Diketonates for Mitochondria-Targeted Photocytotoxicity.
ACS Omega. 2020 Feb 24;5(8):4282-4292. doi: 10.1021/acsomega.9b04204. eCollection 2020 Mar 3.
7
Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior.
Adv Drug Deliv Rev. 2017 Apr;113:61-86. doi: 10.1016/j.addr.2016.05.023. Epub 2016 Jun 4.
8
Benz[c,d]indolium-containing Monomethine Cyanine Dyes: Synthesis and Photophysical Properties.
Molecules. 2015 Dec 24;21(1):E23. doi: 10.3390/molecules21010023.
9
Bis-arylidene oxindole-betulinic Acid conjugate: a fluorescent cancer cell detector with potent anticancer activity.
ACS Med Chem Lett. 2015 Apr 13;6(5):612-6. doi: 10.1021/acsmedchemlett.5b00095. eCollection 2015 May 14.
10
Platinum compounds for high-resolution in vivo cancer imaging.
ChemMedChem. 2014 Jun;9(6):1131-5. doi: 10.1002/cmdc.201300502. Epub 2014 Feb 6.

本文引用的文献

1
Targeted optical imaging of cancer cells using lectin-binding BODIPY conjugated avidin.
Biochem Biophys Res Commun. 2006 Sep 29;348(3):807-13. doi: 10.1016/j.bbrc.2006.07.169. Epub 2006 Aug 4.
3
Individual acidic organelle pH measurements by capillary electrophoresis.
Anal Chem. 2006 Feb 1;78(3):820-6. doi: 10.1021/ac051513x.
4
Fluorescence microscopy.
Nat Methods. 2005 Dec;2(12):910-9. doi: 10.1038/nmeth817.
5
Cell transduction pathways of transportans.
Bioconjug Chem. 2005 Nov-Dec;16(6):1399-410. doi: 10.1021/bc050125z.
6
The multiple uses of fluorescent proteins to visualize cancer in vivo.
Nat Rev Cancer. 2005 Oct;5(10):796-806. doi: 10.1038/nrc1717.
7
Imaging techniques for posterior uveitis.
Curr Opin Ophthalmol. 2004 Dec;15(6):519-30. doi: 10.1097/01.icu.0000144386.05116.c5.
8
Optical-based molecular imaging: contrast agents and potential medical applications.
Eur Radiol. 2003 Feb;13(2):231-43. doi: 10.1007/s00330-002-1610-0. Epub 2002 Aug 13.
9
Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging.
Eur Radiol. 2003 Jan;13(1):195-208. doi: 10.1007/s00330-002-1524-x. Epub 2002 Jul 19.
10
Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases.
Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1206-11. doi: 10.1073/pnas.97.3.1206.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验