Afifi Abdelmonem A, Kotlerman Jenny B, Ettner Susan L, Cowan Marie
School of Public Health, University of California-Los Angeles, CA 90095-1772, USA.
Annu Rev Public Health. 2007;28:95-111. doi: 10.1146/annurev.publhealth.28.082206.094100.
Standard inference procedures for regression analysis make assumptions that are rarely satisfied in practice. Adjustments must be made to insure the validity of statistical inference. These adjustments, known for many years, are used routinely by some health researchers but not by others. We review some of these methods and give an example of their use in a health services study for a continuous and a count outcome. For the continuous outcome, we describe re-transformation using the smear factor, accounting for missing cases via multiple imputation and attrition weights and improving results with bootstrap methods. For the count outcome, we describe zero inflated Poisson and negative binomial models and the two-part model to account for overabundance of zero values. Recent advances in computing and software development have produced user-friendly computer programs that enable the data analyst to improve prediction and inference based on regression analysis.
回归分析的标准推断程序所做的假设在实际中很少能得到满足。必须进行调整以确保统计推断的有效性。这些调整方法已存在多年,一些健康研究人员经常使用,但另一些人却不使用。我们回顾其中一些方法,并给出它们在一项健康服务研究中用于连续型和计数型结果的示例。对于连续型结果,我们描述了使用涂抹因子的重新变换、通过多重填补和损耗权重处理缺失病例以及使用自助法改进结果。对于计数型结果,我们描述了零膨胀泊松模型和负二项式模型以及用于处理零值过多情况的两部分模型。计算和软件开发方面的最新进展产生了用户友好的计算机程序,使数据分析人员能够基于回归分析改进预测和推断。