Suppr超能文献

In vivo spin trapping of nitric oxide from animal tumors.

作者信息

Pustelny Katarzyna, Bielanska Joanna, Plonka Przemyslaw M, Rosen Gerald M, Elas Martyna

机构信息

Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.

出版信息

Nitric Oxide. 2007 Mar;16(2):202-8. doi: 10.1016/j.niox.2006.10.002. Epub 2006 Oct 11.

Abstract

Spin trapping/electron paramagnetic resonance (EPR) spectroscopy allows specific detection of nitric oxide (NO) generation, in vivo. However, in order to detect an EPR signal in living organism, usually a stimulation of immune system with LPS is used to achieve higher than physiological NO levels. Here, we report non-invasive spin trapping of NO in tumors of non-treated, living animals. EPR spectroscopy was performed at S-band to detect NO in Cloudman S91 melanoma tumors growing in the tail of living, syngeneic hosts-DBA/2 mice. Iron (II) N-(dithiocarboxy)sarcosine Fe2+(DTCS)(2) was used as the spin trap. The results were confirmed by X-band ex vivo study. A characteristic three-line spectrum of NO-Fe(DTCS)(2) (A(N)=13 G) was observed (n=4, out of total n=6) in non-treated tumors and in tumors of animals treated with l-arginine. Substrate availability did not limit the detection of NO by spin trapping. Half-life time of the NO-Fe(DTCS)(2) in tumor tissue was about 60 min. The feasibility of non-invasive spin trapping/EPR spectroscopic detection of NO generated in tumor tissue in living animals, without additional activation of the immune system, was demonstrated for the first time.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验