Feenstra I, Brunner H G, van Ravenswaaij C M A
Radboud University Nijmegen Medical Centre, Department of Human Genetics, Nijmegen, The Netherlands.
Cytogenet Genome Res. 2006;115(3-4):231-9. doi: 10.1159/000095919.
High-resolution molecular cytogenetic techniques such as genomic array CGH and MLPA detect submicroscopic chromosome aberrations in patients with unexplained mental retardation. These techniques rapidly change the practice of cytogenetic testing. Additionally, these techniques may improve genotype-phenotype studies of patients with microscopically visible chromosome aberrations, such as Wolf-Hirschhorn syndrome, 18q deletion syndrome and 1p36 deletion syndrome. In order to make the most of high-resolution karyotyping, a similar accuracy of phenotyping is needed to allow researchers and clinicians to make optimal use of the recent advances. International agreements on phenotype nomenclature and the use of computerized 3D face surface models are examples of such improvements in the practice of phenotyping patients with chromosomal anomalies. The combination of high-resolution cytogenetic techniques, a comprehensive, systematic system for phenotyping and optimal data storage will facilitate advances in genotype-phenotype studies and a further deconstruction of chromosomal syndromes. As a result, critical regions or single genes can be determined to be responsible for specific features and malformations.
高分辨率分子细胞遗传学技术,如基因组阵列比较基因组杂交(CGH)和多重连接依赖探针扩增(MLPA),可检测不明原因智力障碍患者的亚显微染色体畸变。这些技术迅速改变了细胞遗传学检测的实践。此外,这些技术可能会改善对具有显微镜下可见染色体畸变患者的基因型-表型研究,如沃尔夫-赫希霍恩综合征、18q缺失综合征和1p36缺失综合征。为了充分利用高分辨率核型分析,需要类似精度的表型分析,以使研究人员和临床医生能够最佳地利用这些最新进展。关于表型命名的国际协议以及计算机化3D面部表面模型的使用就是对染色体异常患者进行表型分析实践中此类改进的例子。高分辨率细胞遗传学技术、全面系统的表型分析系统和最佳数据存储的结合将促进基因型-表型研究的进展以及对染色体综合征的进一步解构。因此,可以确定关键区域或单个基因是特定特征和畸形的原因。