Koru-Sengul Tulay, Stoffer David S, Day Nancy L
Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ont., Canada L8N 3Z5.
Stat Med. 2007 Jul 30;26(17):3330-41. doi: 10.1002/sim.2757.
We propose a transition model for analysing data from complex longitudinal studies. Because missing values are practically unavoidable in large longitudinal studies, we also present a two-stage imputation method for handling general patterns of missing values on both the outcome and the covariates by combining multiple imputation with stochastic regression imputation. Our model is a time-varying auto-regression on the past innovations (residuals), and it can be used in cases where general dynamics must be taken into account, and where the model selection is important. The entire estimation process was carried out using available procedures in statistical packages such as SAS and S-PLUS. To illustrate the viability of the proposed model and the two-stage imputation method, we analyse data collected in an epidemiological study that focused on various factors relating to childhood growth. Finally, we present a simulation study to investigate the behaviour of our two-stage imputation procedure.
我们提出了一种用于分析复杂纵向研究数据的转换模型。由于在大型纵向研究中缺失值几乎不可避免,我们还提出了一种两阶段插补方法,通过将多重插补与随机回归插补相结合来处理结果变量和协变量上缺失值的一般模式。我们的模型是基于过去的新息(残差)的时变自回归模型,可用于必须考虑一般动态情况以及模型选择很重要的情形。整个估计过程使用诸如SAS和S-PLUS等统计软件包中的现有程序进行。为了说明所提出模型和两阶段插补方法的可行性,我们分析了一项流行病学研究中收集的数据,该研究聚焦于与儿童生长相关的各种因素。最后,我们进行了一项模拟研究来考察我们两阶段插补程序的性能。