缺失结局的体力活动试验分析中插补法与建模方法的比较
Comparison of imputation and modelling methods in the analysis of a physical activity trial with missing outcomes.
作者信息
Wood Angela M, White Ian R, Hillsdon Melvyn, Carpenter James
机构信息
MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge CB2 2SR, UK.
出版信息
Int J Epidemiol. 2005 Feb;34(1):89-99. doi: 10.1093/ije/dyh297. Epub 2004 Aug 27.
BACKGROUND
Longitudinal studies almost always have some individuals with missing outcomes. Inappropriate handling of the missing data in the analysis can result in misleading conclusions. Here we review a wide range of methods to handle missing outcomes in single and repeated measures data and discuss which methods are most appropriate.
METHODS
Using data from a randomized controlled trial to compare two interventions for increasing physical activity, we compare complete-case analysis; ad hoc imputation techniques such as last observation carried forward and worst-case; model-based imputation; longitudinal models with random effects; and recently proposed joint models for repeated measures data and non-ignorable dropout.
RESULTS
Estimated intervention effects from ad hoc imputation methods vary widely. Standard multiple imputation and longitudinal modelling agree closely, as they should. Modifying the modelling method to allow for non-ignorable dropout had little effect on estimated intervention effects, but imputing using a common imputation model in both groups gave more conservative results.
CONCLUSIONS
Results from ad hoc imputation methods should be avoided in favour of methods with more plausible assumptions although they may be computationally more complex. Although standard multiple imputation methods and longitudinal modelling methods are equivalent for estimating the treatment effect, the two approaches suggest different ways of relaxing the assumptions, and the choice between them depends on contextual knowledge.
背景
纵向研究几乎总会有一些个体的结局数据缺失。分析中对缺失数据处理不当可能导致误导性结论。在此,我们综述了一系列用于处理单变量和重复测量数据中缺失结局的方法,并讨论哪些方法最为合适。
方法
利用一项随机对照试验的数据来比较两种增加身体活动的干预措施,我们比较了完全病例分析;临时插补技术,如末次观察结转和最坏情况插补;基于模型的插补;具有随机效应的纵向模型;以及最近提出的用于重复测量数据和不可忽略失访的联合模型。
结果
临时插补方法估计的干预效果差异很大。标准多重插补和纵向建模结果非常接近,理应如此。修改建模方法以考虑不可忽略失访对估计的干预效果影响不大,但两组使用共同的插补模型进行插补会得到更保守的结果。
结论
应避免使用临时插补方法的结果,而应采用假设更合理的方法,尽管这些方法计算上可能更复杂。虽然标准多重插补方法和纵向建模方法在估计治疗效果方面等效,但这两种方法在放宽假设方面提出了不同方式,二者的选择取决于背景知识。