Suppr超能文献

卷曲螺旋中寡聚体状态特异性的能量决定因素。

Energetic determinants of oligomeric state specificity in coiled coils.

作者信息

Ramos Jorge, Lazaridis Themis

机构信息

Department of Chemistry, The City College of CUNY Convent Avenue & 138 Street, New York, New York 10031, USA.

出版信息

J Am Chem Soc. 2006 Dec 6;128(48):15499-510. doi: 10.1021/ja0655284.

Abstract

The coiled coil is one of the simplest and best-studied protein structural motifs, consisting of two to five helices wound around each other. Empirical rules have been established on the tendency of different core sequences to form a certain oligomeric state but the physical forces behind this specificity are unclear. In this work, we model four sequences onto the structures of dimeric, trimeric, tetrameric, and pentameric coiled coils. We first examine the ability of an effective energy function (EEF1.1) to discriminate the correct oligomeric state for a given sequence. We find that inclusion of the translational, rotational, and side-chain conformational entropy is necessary for discriminating the native structures from their misassembled counterparts. The decomposition of the effective energy into residue contributions yields theoretical values for the oligomeric propensity of different residue types at different heptad positions. We find that certain calculated residue propensities are general and consistent with existing rules. For example, leucine at d favors dimers, leucine at a favors tetramers or pentamers, and isoleucine at a favors trimers. Other residue propensities are sequence context dependent. For example, glutamine at d favors trimers in one context and pentamers in another. Charged residues at e and g positions usually destabilize higher oligomers due to higher desolvation. Nonpolar residues at these positions confer pentamer specificity when combined with certain residues at positions a and d. Specifically, the pair Leua-Alag' or the inverse was found to stabilize the pentamer. The small energy gap between the native and misfolded counterparts explains why a few mutations at the core sites are sufficient to induce a change in the oligomeric state of these peptides. A large number of possible experiments are suggested by these results.

摘要

卷曲螺旋是最简单且研究最深入的蛋白质结构基序之一,由两条至五条相互缠绕的螺旋组成。关于不同核心序列形成特定寡聚状态的倾向已建立了经验规则,但这种特异性背后的物理力尚不清楚。在这项工作中,我们将四个序列构建到二聚体、三聚体、四聚体和五聚体卷曲螺旋的结构上。我们首先研究一种有效能量函数(EEF1.1)区分给定序列正确寡聚状态的能力。我们发现,纳入平移、旋转和侧链构象熵对于从错误组装的对应物中区分天然结构是必要的。将有效能量分解为残基贡献可得出不同残基类型在不同七肽位置的寡聚倾向的理论值。我们发现某些计算出的残基倾向具有普遍性且与现有规则一致。例如,d位的亮氨酸有利于形成二聚体,a位的亮氨酸有利于形成四聚体或五聚体,a位的异亮氨酸有利于形成三聚体。其他残基倾向则依赖于序列上下文。例如,d位的谷氨酰胺在一种情况下有利于形成三聚体,而在另一种情况下有利于形成五聚体。e和g位的带电残基通常由于更高的去溶剂化作用而使更高阶的寡聚体不稳定。这些位置的非极性残基与a和d位的某些残基结合时赋予五聚体特异性。具体而言,发现Leua - Alag' 对或其反向对可稳定五聚体。天然结构与错误折叠对应物之间的小能量差距解释了为什么核心位点的少数突变足以诱导这些肽的寡聚状态发生变化。这些结果提示了大量可能的实验。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验