Suppr超能文献

细胞膜中 colicin 插入的计算研究:闭状态。

Computational studies of colicin insertion into membranes: the closed state.

机构信息

Department of Chemistry, The City College of CUNY, New York, New York 10031, USA.

出版信息

Proteins. 2011 Jan;79(1):126-41. doi: 10.1002/prot.22866. Epub 2010 Oct 12.

Abstract

Colicins are water-soluble toxins that, upon interaction with membranes, undergo a conformational change, insert, and form pores in them. Pore formation activity is localized in a bundle of 10 α-helices named the pore-forming domain (PFD). There is evidence that colicins attach to the membrane via a hydrophobic hairpin embedded in the core of the PFD. Two main models have been suggested for the membrane-bound state: penknife and umbrella, differing in regard to the orientation of the hydrophobic hairpin with respect to the membrane. The arrangement of the amphipathic helices has been described as either a compact three-dimensional structure or a two-dimensional array of loosely interacting helices on the membrane surface. Using molecular dynamics simulations with an implicit membrane model, we studied the structure and stability of the conformations proposed earlier for four colicins. We find that colicins are initially driven towards the membrane by electrostatic interactions between basic residues and the negatively charged membrane surface. They do not have a unique binding orientation, but in the predominant orientations the central hydrophobic hairpin is parallel to the membrane. In the inserted state, the estimated free energy tends to be lower for the compact arrangements of the amphipathic helix, but the more expanded ones are in better agreement with experimental distance distributions. The difference in energy between penknife and umbrella conformations is small enough for equilibrium to exist between them. Elongation of the hydrophobic hairpin helices and membrane thinning were found unable to produce stabilization of the transmembrane configuration of the hydrophobic hairpin.

摘要

肠毒素是水溶性毒素,与膜相互作用时会发生构象变化,插入并在其中形成孔。孔形成活性定位于称为孔形成域 (PFD) 的 10 个α-螺旋束中。有证据表明,肠毒素通过嵌入 PFD 核心的疏水发夹附着在膜上。对于结合态,已经提出了两种主要模型:手术刀和伞,它们在疏水发夹相对于膜的方向上有所不同。两亲性螺旋的排列被描述为紧密的三维结构或膜表面上松散相互作用的二维螺旋阵列。使用带有隐式膜模型的分子动力学模拟,我们研究了早先提出的四种肠毒素的构象的结构和稳定性。我们发现,肠毒素最初通过碱性残基与带负电荷的膜表面之间的静电相互作用被推向膜。它们没有独特的结合取向,但在主要取向中,中心疏水发夹与膜平行。在插入状态下,估计的自由能对于两亲性螺旋的紧凑排列较低,但更扩展的排列与实验距离分布更吻合。手术刀和伞构象之间的能量差异足够小,以至于它们之间存在平衡。发现疏水发夹螺旋的伸长和膜变薄都不能稳定疏水发夹的跨膜构象。

相似文献

1
Computational studies of colicin insertion into membranes: the closed state.
Proteins. 2011 Jan;79(1):126-41. doi: 10.1002/prot.22866. Epub 2010 Oct 12.
3
Conformation of the closed channel state of colicin A in proteoliposomes: an umbrella model.
J Mol Biol. 2008 Apr 18;378(1):204-14. doi: 10.1016/j.jmb.2008.02.038. Epub 2008 Mar 4.
4
Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array.
Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4282-7. doi: 10.1073/pnas.95.8.4282.
5
Membrane partitioning of the pore-forming domain of colicin A. Role of the hydrophobic helical hairpin.
Biophys J. 2013 Sep 17;105(6):1432-43. doi: 10.1016/j.bpj.2013.08.012.
6
Unfolding pathway of the colicin E1 channel protein on a membrane surface.
J Mol Biol. 2000 Jan 21;295(3):679-92. doi: 10.1006/jmbi.1999.3396.
7
Transmembrane insertion of the colicin Ia hydrophobic hairpin.
J Membr Biol. 1997 May 1;157(1):27-37. doi: 10.1007/s002329900213.
10
Membrane insertion of the pore-forming domain of colicin A. A spectroscopic study.
Eur J Biochem. 1991 Mar 28;196(3):599-607. doi: 10.1111/j.1432-1033.1991.tb15855.x.

引用本文的文献

1
Mechanism of negative membrane curvature generation by I-BAR domains.
Structure. 2021 Dec 2;29(12):1440-1452.e4. doi: 10.1016/j.str.2021.07.010. Epub 2021 Sep 13.
2
Implicit membrane treatment of buried charged groups: application to peptide translocation across lipid bilayers.
Biochim Biophys Acta. 2014 Sep;1838(9):2149-59. doi: 10.1016/j.bbamem.2014.01.015. Epub 2014 Feb 10.

本文引用的文献

1
A gating charge transfer center in voltage sensors.
Science. 2010 Apr 2;328(5974):67-73. doi: 10.1126/science.1185954.
2
Topology of the amphipathic helices of the colicin A pore-forming domain in E. coli lipid membranes studied by pulse EPR.
Phys Chem Chem Phys. 2009 Aug 21;11(31):6770-7. doi: 10.1039/b907117m. Epub 2009 Jul 7.
3
CHARMM: the biomolecular simulation program.
J Comput Chem. 2009 Jul 30;30(10):1545-614. doi: 10.1002/jcc.21287.
5
Conformation of the closed channel state of colicin A in proteoliposomes: an umbrella model.
J Mol Biol. 2008 Apr 18;378(1):204-14. doi: 10.1016/j.jmb.2008.02.038. Epub 2008 Mar 4.
7
Temperature dependence of structure, bending rigidity, and bilayer interactions of dioleoylphosphatidylcholine bilayers.
Biophys J. 2008 Jan 1;94(1):117-24. doi: 10.1529/biophysj.107.115691. Epub 2007 Sep 7.
8
Helix orientations in membrane-associated Bcl-X(L) determined by 15N-solid-state NMR spectroscopy.
Eur Biophys J. 2007 Dec;37(1):71-80. doi: 10.1007/s00249-007-0165-z. Epub 2007 May 10.
9
10
Energetic determinants of oligomeric state specificity in coiled coils.
J Am Chem Soc. 2006 Dec 6;128(48):15499-510. doi: 10.1021/ja0655284.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验