Suppr超能文献

前体tRNA 3'-CCA与大肠杆菌核糖核酸酶P RNA的相互作用对于核糖核酸酶P在体内的催化作用至关重要。

The precursor tRNA 3'-CCA interaction with Escherichia coli RNase P RNA is essential for catalysis by RNase P in vivo.

作者信息

Wegscheid Barbara, Hartmann Roland K

机构信息

Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, D-35037 Marburg, Germany.

出版信息

RNA. 2006 Dec;12(12):2135-48. doi: 10.1261/rna.188306. Epub 2006 Oct 24.

Abstract

The L15 region of Escherichia coli RNase P RNA forms two Watson-Crick base pairs with precursor tRNA 3'-CCA termini (G292-C75 and G293-C74). Here, we analyzed the phenotypes associated with disruption of the G292-C75 or G293-C74 pair in vivo. Mutant RNase P RNA alleles (rnpBC292 and rnpBC293) caused severe growth defects in the E. coli rnpB mutant strain DW2 and abolished growth in the newly constructed mutant strain BW, in which chromosomal rnpB expression strictly depended on the presence of arabinose. An isosteric C293-G74 base pair, but not a C292-G75 pair, fully restored catalytic performance in vivo, as shown for processing of precursor 4.5S RNA. This demonstrates that the base identity of G292, but not G293, contributes to the catalytic process in vivo. Activity assays with mutant RNase P holoenzymes assembled in vivo or in vitro revealed that the C292/293 mutations cause a severe functional defect at low Mg2+ concentrations (2 mM), which we infer to be on the level of catalytically important Mg2+ recruitment. At 4.5 mM Mg2+, activity of mutant relative to the wild-type holoenzyme, was decreased only about twofold, but 13- to 24-fold at 2 mM Mg2+. Moreover, our findings make it unlikely that the C292/293 phenotypes include significant contributions from defects in protein binding, substrate affinity, or RNA degradation. However, native PAGE experiments revealed nonidentical RNA folding equilibria for the wild-type versus mutant RNase P RNAs, in a buffer- and preincubation-dependent manner. Thus, we cannot exclude that altered folding of the mutant RNAs may have also contributed to their in vivo defect.

摘要

大肠杆菌核糖核酸酶P RNA的L15区域与前体tRNA 3'-CCA末端形成两个沃森-克里克碱基对(G292-C75和G293-C74)。在此,我们分析了体内G292-C75或G293-C74碱基对破坏相关的表型。突变的核糖核酸酶P RNA等位基因(rnpBC292和rnpBC293)在大肠杆菌rnpB突变株DW2中导致严重的生长缺陷,并使新构建的突变株BW无法生长,在该突变株中,染色体rnpB的表达严格依赖于阿拉伯糖的存在。如前体4.5S RNA的加工所示,一个等排的C293-G74碱基对而非C292-G75碱基对在体内完全恢复了催化性能。这表明G292而非G293的碱基特性对体内催化过程有贡献。对体内或体外组装的突变核糖核酸酶P全酶进行的活性测定表明,C292/293突变在低镁离子浓度(2 mM)下导致严重的功能缺陷,我们推断这发生在催化重要的镁离子募集水平。在4.5 mM镁离子浓度下,突变体相对于野生型全酶的活性仅降低约两倍,但在2 mM镁离子浓度下降低了13至24倍。此外,我们的研究结果表明,C292/293表型不太可能包括蛋白质结合、底物亲和力或RNA降解缺陷的显著影响。然而,天然聚丙烯酰胺凝胶电泳实验显示,野生型与突变型核糖核酸酶P RNA的RNA折叠平衡不同,这取决于缓冲液和预孵育条件。因此,我们不能排除突变RNA折叠的改变也可能导致其体内缺陷。

相似文献

2
In vivo and in vitro investigation of bacterial type B RNase P interaction with tRNA 3'-CCA.
Nucleic Acids Res. 2007;35(6):2060-73. doi: 10.1093/nar/gkm005. Epub 2007 Mar 13.
4
RNase P of the Cyanophora paradoxa cyanelle: a plastid ribozyme.
Biochimie. 2007 Dec;89(12):1528-38. doi: 10.1016/j.biochi.2007.08.004. Epub 2007 Aug 11.
6
Mutational analysis of the joining regions flanking helix P18 in E. coli RNase P RNA.
J Mol Biol. 1996 Jun 14;259(3):422-33. doi: 10.1006/jmbi.1996.0329.
7
Kinetics and thermodynamics of the RNase P RNA cleavage reaction: analysis of tRNA 3'-end variants.
J Mol Biol. 1995 Mar 24;247(2):161-72. doi: 10.1006/jmbi.1994.0130.
8
Participation of the 3'-CCA of tRNA in the binding of catalytic Mg2+ ions by ribonuclease P.
Biochemistry. 1998 May 19;37(20):7277-83. doi: 10.1021/bi973100z.
10
Antisense inhibition of Escherichia coli RNase P RNA: mechanistic aspects.
Chembiochem. 2003 Oct 6;4(10):1049-56. doi: 10.1002/cbic.200300675.

引用本文的文献

1
Suppression of the conditionally lethal phenotype by different compensatory mutations.
RNA. 2024 Jul 16;30(8):977-991. doi: 10.1261/rna.079909.123.
3
Characterization of RNA-based and protein-only RNases P from bacteria encoding both enzyme types.
RNA. 2023 Mar;29(3):376-391. doi: 10.1261/rna.079459.122. Epub 2023 Jan 5.
4
Synthetic riboswitches for the analysis of tRNA processing by eukaryotic RNase P enzymes.
RNA. 2022 Apr;28(4):551-567. doi: 10.1261/rna.078814.121. Epub 2022 Jan 12.
5
Cooperativity and Interdependency between RNA Structure and RNA-RNA Interactions.
Noncoding RNA. 2021 Dec 15;7(4):81. doi: 10.3390/ncrna7040081.
7
Ligand-dependent tRNA processing by a rationally designed RNase P riboswitch.
Nucleic Acids Res. 2021 Feb 22;49(3):1784-1800. doi: 10.1093/nar/gkaa1282.
8
Minimal and RNA-free RNase P in .
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11121-11126. doi: 10.1073/pnas.1707862114. Epub 2017 Oct 3.

本文引用的文献

1
RNase P: interface of the RNA and protein worlds.
Trends Biochem Sci. 2006 Jun;31(6):333-41. doi: 10.1016/j.tibs.2006.04.007. Epub 2006 May 6.
2
Protein activation of a ribozyme: the role of bacterial RNase P protein.
EMBO J. 2005 Oct 5;24(19):3360-8. doi: 10.1038/sj.emboj.7600805. Epub 2005 Sep 15.
3
Crystal structure of the RNA component of bacterial ribonuclease P.
Nature. 2005 Sep 22;437(7058):584-7. doi: 10.1038/nature04074. Epub 2005 Aug 21.
4
Processing of m1 RNA at the 3' end protects its primary transcript from degradation.
J Biol Chem. 2005 Oct 14;280(41):34667-74. doi: 10.1074/jbc.M505005200. Epub 2005 Aug 15.
5
Lead(II) cleavage analysis of RNase P RNA in vivo.
RNA. 2005 Sep;11(9):1348-54. doi: 10.1261/rna.2590605. Epub 2005 Jul 25.
9
The enigma of ribonuclease P evolution.
Trends Genet. 2003 Oct;19(10):561-9. doi: 10.1016/j.tig.2003.08.007.
10
Recent insights into the structure and function of the ribonucleoprotein enzyme ribonuclease P.
Curr Opin Struct Biol. 2003 Jun;13(3):325-33. doi: 10.1016/s0959-440x(03)00069-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验