Suppr超能文献

细菌B型核糖核酸酶P与tRNA 3'-CCA相互作用的体内和体外研究。

In vivo and in vitro investigation of bacterial type B RNase P interaction with tRNA 3'-CCA.

作者信息

Wegscheid Barbara, Hartmann Roland K

机构信息

Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 6, D-35037 Marburg, Germany.

出版信息

Nucleic Acids Res. 2007;35(6):2060-73. doi: 10.1093/nar/gkm005. Epub 2007 Mar 13.

Abstract

For catalysis by bacterial type B RNase P, the importance of a specific interaction with p(recursor)tRNA 3'-CCA termini is yet unclear. We show that mutation of one of the two G residues assumed to interact with 3'-CCA in type B RNase P RNAs inhibits cell growth, but cell viability is at least partially restored at increased RNase P levels due to RNase P protein overexpression. The in vivo defects of the mutant enzymes correlated with an enzyme defect at low Mg(2+) in vitro. For Bacillus subtilis RNase P, an isosteric C259-G(74) bp fully and a C258-G(75) bp slightly rescued catalytic proficiency, demonstrating Watson-Crick base pairing to tRNA 3'-CCA but also emphasizing the importance of the base identity of the 5'-proximal G residue (G258). We infer the defect of the mutant enzymes to primarily lie in the recruitment of catalytically relevant Mg(2+), with a possible contribution from altered RNA folding. Although with reduced efficiency, B. subtilis RNase P is able to cleave CCA-less ptRNAs in vitro and in vivo. We conclude that the observed in vivo defects upon disruption of the CCA interaction are either due to a global deceleration in ptRNA maturation or severe inhibition of 5'-maturation for a ptRNA subset.

摘要

对于细菌B型核糖核酸酶P的催化作用而言,与前体tRNA 3'-CCA末端发生特异性相互作用的重要性尚不清楚。我们发现,在B型核糖核酸酶P RNA中,假定与3'-CCA相互作用的两个G残基之一发生突变会抑制细胞生长,但由于核糖核酸酶P蛋白的过表达,在核糖核酸酶P水平升高时细胞活力至少会部分恢复。突变酶在体内的缺陷与体外低镁离子浓度下的酶缺陷相关。对于枯草芽孢杆菌核糖核酸酶P,一个等排的C259-G(74)碱基对完全恢复了催化活性,一个C258-G(75)碱基对则略微恢复了催化活性,这表明与tRNA 3'-CCA形成了沃森-克里克碱基对,但同时也强调了5'-近端G残基(G258)碱基同一性的重要性。我们推断突变酶的缺陷主要在于催化相关镁离子的募集,RNA折叠改变可能也有一定作用。尽管效率有所降低,但枯草芽孢杆菌核糖核酸酶P在体外和体内均能够切割不含CCA的前体tRNA。我们得出结论,破坏CCA相互作用后在体内观察到的缺陷,要么是由于前体tRNA成熟的整体减速,要么是由于前体tRNA子集的5'-成熟受到严重抑制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4bf/1874595/7bec10ecf12f/gkm005f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验