Stenmark Pål, Kursula Petri, Flodin Susanne, Gräslund Susanne, Landry Robert, Nordlund Pär, Schüler Herwig
Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.
J Biol Chem. 2007 Feb 2;282(5):3182-7. doi: 10.1074/jbc.M609838200. Epub 2006 Nov 29.
Inosine triphosphatase (ITPA) is a ubiquitous key regulator of cellular non-canonical nucleotide levels. It breaks down inosine and xanthine nucleotides generated by deamination of purine bases. Its enzymatic action prevents accumulation of ITP and reduces the risk of incorporation of potentially mutagenic inosine nucleotides into nucleic acids. Here we describe the crystal structure of human ITPA in complex with its prime substrate ITP, as well as the apoenzyme at 2.8 and 1.1A, respectively. These structures show for the first time the site of substrate and Mg2+ coordination as well as the conformational changes accompanying substrate binding in this class of enzymes. Enzyme substrate interactions induce an extensive closure of the nucleotide binding grove, resulting in tight interactions with the base that explain the high substrate specificity of ITPA for inosine and xanthine over the canonical nucleotides. One of the dimer contact sites is made up by a loop that is involved in coordinating the metal ion in the active site. We predict that the ITPA deficiency mutation P32T leads to a shift of this loop that results in a disturbed affinity for nucleotides and/or a reduced catalytic activity in both monomers of the physiological dimer.
肌苷三磷酸酶(ITPA)是细胞非经典核苷酸水平的一种普遍存在的关键调节因子。它分解由嘌呤碱基脱氨产生的肌苷和黄嘌呤核苷酸。其酶促作用可防止ITP积累,并降低潜在诱变的肌苷核苷酸掺入核酸的风险。在此,我们分别描述了与主要底物ITP结合的人ITPA以及无底物酶在2.8 Å和1.1 Å分辨率下的晶体结构。这些结构首次展示了底物和Mg2+配位位点以及这类酶中伴随底物结合的构象变化。酶与底物的相互作用导致核苷酸结合凹槽广泛闭合,从而与碱基形成紧密相互作用,这解释了ITPA对肌苷和黄嘌呤的底物特异性高于经典核苷酸。二聚体接触位点之一由一个参与在活性位点配位金属离子的环组成。我们预测,ITPA缺陷突变P32T会导致该环发生位移,从而导致对核苷酸的亲和力受到干扰和/或生理二聚体的两个单体的催化活性降低。