Suppr超能文献

肌苷三磷酸焦磷酸酶(ITPA)蛋白及其两种临床相关突变体的结构动力学:分子动力学模拟。

Structural dynamics of inosine triphosphate pyrophosphatase (ITPA) protein and two clinically relevant mutants: molecular dynamics simulations.

机构信息

Department of Chemistry and Biochemistry, Eastern Washington University, Cheney, WA, USA.

出版信息

J Biomol Struct Dyn. 2021 Mar;39(4):1236-1247. doi: 10.1080/07391102.2020.1727363. Epub 2020 Mar 4.

Abstract

The inosine triphosphate pyrophosphatase (ITPA) protein is responsible for removing noncanonical purine nucleoside triphosphates from intracellular nucleotide pools. Absence of ITPA results in genomic instability and increased levels of inosine in DNA and RNA. The proline to threonine substitution at position 32 (P32T) affects roughly 15% of the global population and can modulate treatment outcomes for cancer, lupus, and hepatitis C patients. The substitution of arginine with cysteine at position 178 (R178C) is extremely uncommon and has only been reported in a small cohort of early infantile encephalopathy patients suggesting that a functional ITPA protein is required for life in humans. Here we present molecular dynamic simulations that describe the structure and dynamics of the wild-type ITPA homodimer and two of its clinically relevant mutants, P32T and R178C. The simulation results indicate that both the P32T and R178C mutations alter the structure and dynamic properties of the protein and provide a possible explanation of the experimentally observed effect of the mutations on ITPA activity. Specifically, the mutations increased the overall flexibility of the protein and changed the dominant collective motions of the top lobe as well as the helix 2 of the lower lobe. Moreover, we have identified key active-site residues that are classified as essential or intermediate for inosine triphosphate (ITP) hydrolyzing activity based on their hydrogen bond occupancy. Here we also present biochemical data indicating that the R178C mutant has very low ITP hydrolyzing activity.Communicated by Ramaswamy H. Sarma.

摘要

肌苷三磷酸焦磷酸酶 (ITPA) 蛋白负责从细胞内核苷酸池中去除非规范嘌呤核苷三磷酸。ITPA 的缺失会导致基因组不稳定,并增加 DNA 和 RNA 中的肌苷水平。位于第 32 位的脯氨酸到苏氨酸取代 (P32T) 影响全球约 15%的人群,可调节癌症、狼疮和丙型肝炎患者的治疗结果。位于第 178 位的精氨酸被半胱氨酸取代 (R178C) 的情况极为罕见,仅在一小部分早发性婴儿脑病患者中报道过,这表明人类生命需要功能性的 ITPA 蛋白。在这里,我们展示了描述野生型 ITPA 同源二聚体及其两种临床相关突变体 P32T 和 R178C 的结构和动力学的分子动力学模拟。模拟结果表明,P32T 和 R178C 突变均改变了蛋白质的结构和动态特性,并为突变对 ITPA 活性的实验观察结果提供了可能的解释。具体而言,突变增加了蛋白质的整体灵活性,并改变了顶部叶的主要集体运动以及下部叶的螺旋 2。此外,我们还确定了关键的活性部位残基,根据它们的氢键占据情况,将其分类为肌苷三磷酸 (ITP) 水解活性的必需或中间残基。这里我们还提供了生化数据,表明 R178C 突变体的 ITP 水解活性非常低。由 Ramaswamy H. Sarma 传达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验