Suppr超能文献

使用纳米电喷雾-差分迁移谱仪-质谱仪系统,通过选择溶剂来控制电喷雾聚集离子的形成,以分析寡糖。

Using a nanoelectrospray-differential mobility spectrometer-mass spectrometer system for the analysis of oligosaccharides with solvent selected control over ESI aggregate ion formation.

作者信息

Levin Daren S, Vouros Paul, Miller Raanan A, Nazarov Erkinjon G

机构信息

Department of Chemistry and Chemical Biology, Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, USA.

出版信息

J Am Soc Mass Spectrom. 2007 Mar;18(3):502-11. doi: 10.1016/j.jasms.2006.10.008. Epub 2006 Nov 30.

Abstract

Differential mobility spectrometry (DMS), also commonly referred to as high field asymmetric waveform ion mobility spectrometry (FAIMS) is a rapidly advancing technology for gas-phase ion separation. The interfacing of DMS with mass spectrometry (MS) offers potential advantages over the use of mass spectrometry alone. Such advantages include improvements to mass spectral signal/noise, orthogonal/complementary ion separation to mass spectrometry, enhanced ion and complexation structural analysis, and the potential for rapid analyte quantitation. In this report, we demonstrate the successful use of our nanoESI-DMS-MS system, with a methanol drift gas modifier, for the separation of oligosaccharides. The tendency for ESI to form oligosaccharide aggregate ions and the negative impact this has on nanoESI-DMS-MS oligosaccharide analysis is described. In addition, we demonstrate the importance of sample solvent selection for controlling nanoESI oligosaccharide aggregate ion formation and its effect on glycan ionization and DMS separation. The successful use of a tetrachloroethane/methanol solvent solution to reduce ESI oligosaccharide aggregate ion formation while efficiently forming a dominant MH(+) molecular ion is presented. By reducing aggregate ion formation in favor of a dominant MH(+) ion, DMS selectivity and specificity is improved. In addition to DMS, we would expect the reduction in aggregate ion complexity to be beneficial to the analysis of oligosaccharides for other post-ESI separation techniques such as mass spectrometry and ion mobility. The solvent selected control over MH(+) molecular ion formation, offered by the use of the tetrachloroethane/methanol solvent, also holds promise for enhancing MS/MS structural characterization analysis of glycans.

摘要

差分离子淌度谱法(DMS),通常也被称为高场不对称波形离子淌度谱法(FAIMS),是一种快速发展的气相离子分离技术。DMS与质谱(MS)联用相较于单独使用质谱具有潜在优势。这些优势包括改善质谱信号/噪声、与质谱形成正交/互补的离子分离、增强离子和络合物结构分析以及实现快速分析物定量的潜力。在本报告中,我们展示了我们的纳米电喷雾电离 - DMS - 质谱系统在使用甲醇漂移气体改性剂的情况下成功用于分离寡糖。描述了电喷雾电离形成寡糖聚集离子的趋势及其对纳米电喷雾电离 - DMS - 质谱寡糖分析的负面影响。此外,我们证明了样品溶剂选择对于控制纳米电喷雾电离寡糖聚集离子形成及其对聚糖电离和DMS分离的影响的重要性。展示了成功使用四氯乙烷/甲醇溶剂溶液来减少电喷雾电离寡糖聚集离子形成,同时有效形成占主导地位的MH(+)分子离子。通过减少聚集离子形成以利于占主导地位的MH(+)离子,提高了DMS的选择性和特异性。除了DMS,我们预计聚集离子复杂性的降低对于其他电喷雾电离后分离技术(如质谱和离子淌度)分析寡糖也将是有益的。使用四氯乙烷/甲醇溶剂对MH(+)分子离子形成的溶剂选择控制,也有望增强聚糖的串联质谱结构表征分析。

相似文献

4
Development of a high-throughput differential mobility separation-tandem mass spectrometry (DMS-MS/MS) method for clinical urine drug testing.
J Mass Spectrom Adv Clin Lab. 2022 Jan 3;23:50-57. doi: 10.1016/j.jmsacl.2021.12.008. eCollection 2022 Jan.
6
In-depth characterization of N-linked oligosaccharides using fluoride-mediated negative ion microfluidic chip LC-MS.
Anal Chem. 2013 Mar 19;85(6):3127-35. doi: 10.1021/ac3031898. Epub 2013 Feb 27.

引用本文的文献

2
Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead.
J Am Soc Mass Spectrom. 2019 Nov;30(11):2185-2195. doi: 10.1007/s13361-019-02288-2. Epub 2019 Sep 6.
4
On the Nature of Mass Spectrometer Analyzer Contamination.
J Am Soc Mass Spectrom. 2017 Nov;28(11):2384-2392. doi: 10.1007/s13361-017-1747-3. Epub 2017 Jul 21.
6
Understanding gas phase modifier interactions in rapid analysis by differential mobility-tandem mass spectrometry.
J Am Soc Mass Spectrom. 2014 Jul;25(7):1098-113. doi: 10.1007/s13361-013-0808-5. Epub 2014 Jan 23.
8
High-field asymmetric-waveform ion mobility spectrometry and electron detachment dissociation of isobaric mixtures of glycosaminoglycans.
J Am Soc Mass Spectrom. 2014 Feb;25(2):258-68. doi: 10.1007/s13361-013-0771-1. Epub 2013 Nov 20.
9
Differential mobility spectrometry with nanospray ion source as a compact detector for small organics and inorganics.
Int J Ion Mobil Spectrom. 2013 Sep;16(3):217-227. doi: 10.1007/s12127-013-0135-3.
10
Extending the dynamic range of the ion trap by differential mobility filtration.
J Am Soc Mass Spectrom. 2013 Sep;24(9):1428-36. doi: 10.1007/s13361-013-0655-4.

本文引用的文献

3
Influence of the labeling group on ionization and fragmentation of carbohydrates in mass spectrometry.
J Am Soc Mass Spectrom. 2005 May;16(5):683-96. doi: 10.1016/j.jasms.2005.01.021.
5
Ionization and fragmentation of N-linked glycans as silver adducts by electrospray mass spectrometry.
Rapid Commun Mass Spectrom. 2005;19(4):484-92. doi: 10.1002/rcm.1815.
10
Functional expression and membrane fusion tropism of the envelope glycoproteins of Hendra virus.
Virology. 2001 Nov 10;290(1):121-35. doi: 10.1006/viro.2001.1158.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验