Kafle Amol, Coy Stephen L, Wong Bryan M, Fornace Albert J, Glick James J, Vouros Paul
Department of Chemistry and Chemical Biology and Barnett Institute, Northeastern University, Boston,, MA, 02115, USA,
J Am Soc Mass Spectrom. 2014 Jul;25(7):1098-113. doi: 10.1007/s13361-013-0808-5. Epub 2014 Jan 23.
A systematic study involving the use and optimization of gas-phase modifiers in quantitative differential mobility-mass spectrometry (DMS-MS) analysis is presented using nucleoside-adduct biomarkers of DNA damage as an important reference point for analysis in complex matrices. Commonly used polar protic and polar aprotic modifiers have been screened for use against two deoxyguanosine adducts of DNA: N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-4-ABP) and N-(deoxyguanosin-8-y1)-2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (dG-C8-PhIP). Particular attention was paid to compensation voltage (CoV) shifts, peak shapes, and product ion signal intensities while optimizing the DMS-MS conditions. The optimized parameters were then applied to rapid quantitation of the DNA adducts in calf thymus DNA. After a protein precipitation step, adduct levels corresponding to less than one modification in 10(6) normal DNA bases were detected using the DMS-MS platform. Based on DMS fundamentals and ab initio thermochemical results, we interpret the complexity of DMS modifier responses in terms of thermal activation and the development of solvent shells. At very high bulk gas temperature, modifier dipole moment may be the most important factor in cluster formation and cluster geometry, but at lower temperatures, multi-neutral clusters are important and less predictable. This work provides a useful protocol for targeted DNA adduct quantitation and a basis for future work on DMS modifier effects.
本文介绍了一项系统研究,该研究以DNA损伤的核苷加合物生物标志物作为复杂基质分析的重要参考点,涉及在定量差分迁移率-质谱(DMS-MS)分析中使用和优化气相改性剂。针对DNA的两种脱氧鸟苷加合物:N-(脱氧鸟苷-8-基)-4-氨基联苯(dG-C8-4-ABP)和N-(脱氧鸟苷-8-基)-2-氨基-1-甲基-6-苯基咪唑并[4,5-b]吡啶(dG-C8-PhIP),筛选了常用的极性质子和极性非质子改性剂。在优化DMS-MS条件时,特别关注补偿电压(CoV)偏移、峰形和产物离子信号强度。然后将优化后的参数应用于小牛胸腺DNA中DNA加合物的快速定量分析。经过蛋白质沉淀步骤后,使用DMS-MS平台检测到与10^6个正常DNA碱基中少于一个修饰相对应的加合物水平。基于DMS基本原理和从头算热化学结果,我们从热活化和溶剂壳层的形成角度解释了DMS改性剂响应的复杂性。在非常高的本体气体温度下,改性剂偶极矩可能是簇形成和簇几何形状的最重要因素,但在较低温度下,多中性簇很重要且较难预测。这项工作为靶向DNA加合物定量提供了有用的方案,并为未来关于DMS改性剂效应的研究奠定了基础。