Sasai Miwa, Shingai Masashi, Funami Kenji, Yoneyama Mitsutoshi, Fujita Takashi, Matsumoto Misako, Seya Tsukasa
Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan.
J Immunol. 2006 Dec 15;177(12):8676-83. doi: 10.4049/jimmunol.177.12.8676.
TLR3 and the cytoplasmic helicase family proteins (retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5)) serve as dsRNA pattern-recognition receptors. In response to poly(I:C), a representative of dsRNA, and viral infection, they have been shown to activate the transcription factor IFN regulatory factor (IRF)-3, which in turn induces activation of the IFN-beta promoter. RIG-I/MDA5 recognizes dsRNA in the cytoplasm, whereas TLR3 resides in the cell surface membrane or endosomes to engage in extracytoplasmic recognition of dsRNA. Recent reports suggest that TLR3 induces cellular responses in epithelial cells in response to respiratory syncytial virus (RSV). The modus for TLR3 activation by RSV, however, remains unresolved. By small interference RNA gene-silencing technology and human cell transfectants, we have revealed that knockdown of NAK-associated protein 1 (NAP1) leads to the down-regulation of IFN-beta promoter activation >24 h after poly(I:C) or virus (RSV and vesicular stomatitis virus) treatment. NAP1 is located downstream of the adapter Toll-IL-1R homology domain-containing adapter molecule (TICAM)-1 (Toll/IL-1R domain-containing adapter-inducing IFN-beta) in the TLR3 pathway, but TICAM-1 and TLR3 did not participate in the IRF-3 and IFN-beta promoter activation by RSV infection. Virus-mediated activation of the IFN-beta promoter was largely abrogated by the gene silencing of IFN-beta promoter stimulator-1 (mitochondria antiviral signaling (MAVS), VISA, Cardif), the adapter of the RIG-I/MDA5 dsRNA-recognition proteins. In both the TLR and virus-mediated IFN-inducing pathways, IkappaB kinase-related kinase epsilon and TANK-binding kinase 1 participated in IFN-beta induction. Thus, RSV as well as other viruses induces replication-mediated activation of the IFN-beta promoter, which is intracellularly initiated by the RIG-I/MDA5 but not the TLR3 pathway. Both the cytoplasmic and TLR3-mediated dsRNA recognition pathways converge upon NAP1 for the activation of the IRF-3 and IFN-beta promoter.
Toll样受体3(TLR3)和细胞质解旋酶家族蛋白(视黄酸诱导基因I(RIG-I)和黑色素瘤分化相关基因5(MDA5))作为双链RNA模式识别受体。在对双链RNA的代表多聚肌苷酸-胞苷酸(poly(I:C))以及病毒感染作出反应时,它们已被证明可激活转录因子干扰素调节因子(IRF)-3,而IRF-3继而诱导干扰素-β启动子的激活。RIG-I/MDA5在细胞质中识别双链RNA,而TLR3位于细胞表面膜或内体中,以参与双链RNA的胞外识别。最近的报告表明,TLR3在呼吸道合胞病毒(RSV)感染时可诱导上皮细胞产生细胞反应。然而,RSV激活TLR3的方式仍未明确。通过小干扰RNA基因沉默技术和人细胞转染体,我们发现,敲低NAK相关蛋白1(NAP1)会导致在poly(I:C)或病毒(RSV和水疱性口炎病毒)处理后24小时以上,干扰素-β启动子激活下调。NAP1位于TLR3途径中衔接蛋白含Toll-IL-1R同源结构域的衔接分子(TICAM)-1(含Toll/IL-1R结构域的衔接分子诱导干扰素-β)的下游,但TICAM-1和TLR3不参与RSV感染诱导的IRF-3和干扰素-β启动子激活。干扰素-β启动子刺激因子-1(线粒体抗病毒信号蛋白(MAVS)、VISA、Cardif)(RIG-I/MDA5双链RNA识别蛋白的衔接分子)的基因沉默在很大程度上消除了病毒介导的干扰素-β启动子激活。在TLR和病毒介导的干扰素诱导途径中,IκB激酶相关激酶ε和TANK结合激酶1均参与干扰素-β的诱导。因此,RSV以及其他病毒可诱导复制介导的干扰素-β启动子激活,这是由RIG-I/MDA5而非TLR3途径在细胞内启动的。细胞质和TLR3介导的双链RNA识别途径均汇聚于NAP1,以激活IRF-3和干扰素-β启动子。